首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
猪流感(H_1N_1H_3N_2亚型)二价灭活疫苗试制报告   总被引:1,自引:0,他引:1  
猪流行性感冒(swine influenza,SI)是由猪流行性感冒病毒(SIV)引起的猪的一种急性、热性和高度接触性的呼吸道传染病,其临床上以突发高热、咳嗽、呼吸困难、衰竭和死亡为特征[1].  相似文献   

2.
甲型H1N1流感研究进展   总被引:1,自引:0,他引:1  
2009年3月墨西哥与美国先后出现甲型H1N1型流感,并在很短时间内席卷全球,世界卫生组织(WHO)将此次全球流感大流行的预警级别提高到5级。目前研究表明甲型H1N1流感病毒是人流感病毒、北美州禽流感病毒,以及北美洲、欧洲和亚洲猪流感病毒的混合体,其易感人群的年龄段主要在20~45岁,且人群间传染性强。临床表面除一般流感症状外,表现出特异的呼吸道和消化道疾病症状,病死率高于一般流感。本文对甲型H1N1流感的临床表现、病毒特征及其相互关系等做一综述。  相似文献   

3.
建立DNA微列阵技术检测甲型H1N1和季节性H1N1流感病毒的方法,进而探讨该方法用于检测临床标本的可行性。通过生物医学数据库甲型H1N1流感病毒及季节性H1N1亚型流感HA与NA基因进行检索和筛选,应用分子生物学软件,进行序列分析、引物及探针设计,并进行验证。试验所设计的探针可以对甲型H1N1流感与季节性H1N1流感病毒进行区分,用该方法检测了长春市CDC送检的6份疑似甲型H1N1流感病毒临床病例,4份阳性,检测结果同实时荧光定量PCR方法一致。结果表明,利用本研究建立的DNA微列阵技术检测甲型H1N1流感病毒方法,特异性和敏感性强,可作为甲型H1N1流感病毒临床标本检测方法。  相似文献   

4.
Yang H  Chen Y  Shi J  Guo J  Xin X  Zhang J  Wang D  Shu Y  Qiao C  Chen H 《Veterinary microbiology》2011,152(3-4):229-234
Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza.  相似文献   

5.
Quail has been proposed to be an intermediate host of influenza A viruses. However, information on the susceptibility and pathogenicity of pandemic H1N1 2009 (pH1N1) and swine influenza viruses in quails is limited. In this study, the pathogenicity, virus shedding, and transmission characteristics of pH1N1, swine H1N1 (swH1N1), and avian H3N2 (dkH3N2) influenza viruses in quails was examined. Three groups of 15 quails were inoculated with each virus and evaluated for clinical signs, virus shedding and transmission, pathological changes, and serological responses. None of the 75 inoculated (n = 45), contact exposed (n = 15), or negative control (n = 15) quails developed any clinical signs. In contrast to the low virus shedding titers observed from the swH1N1-inoculated quails, birds inoculated with dkH3N2 and pH1N1 shed relatively high titers of virus predominantly from the respiratory tract until 5 and 7 DPI, respectively, that were rarely transmitted to the contact quails. Gross and histopathological lesions were observed in the respiratory and intestinal tracts of quail inoculated with either pH1N1 or dkH3N2, indicating that these viruses were more pathogenic than swH1N1. Sero-conversions were detected 7 DPI in two out of five pH1N1-inoculated quails, three out of five quails inoculated with swH1N1, and four out of five swH1N1-infected contact birds. Taken together, this study demonstrated that quails were more susceptible to infection with pH1N1 and dkH3N2 than swH1N1.  相似文献   

6.
7.
Outbreaks of influenza were diagnosed in two turkey breeder flocks on the same premises in eastern North Carolina during the "dark-out" period of recycling for a second lay. Clinical history included increased mortality from acute death with no apparent predisposing illness. Mortality attributed to the disease was 4.5% in one flock and 3.3% in the other. Necropsy findings included severe diffuse congestion and edema of both lungs, with little or no pleural exudate. Spleens were moderately to markedly enlarged and mottled, and kidneys were swollen and congested. Microscopic lesions included moderate to severe serofibrinous pneumonia with severe pulmonary congestion. Splenic changes included fibrin deposition and severe congestion, and severe congestion was noted in kidneys. Influenza virus (H1N1) was isolated from pools of tissues including lung, spleen, liver, and kidney, and both flocks seroconverted to influenza (H1N1) virus.  相似文献   

8.
猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法的建立   总被引:2,自引:3,他引:2  
对我国分离到的猪流感病毒和GenBank数据库中已有的猪流感病毒H1N1、H1N2和H3N2亚型毒株的HA、NA基因核苷酸序列进行分析,分别选出各个病毒亚型HA和NA基因中高度保守且特异的核苷酸区域,设计扩增猪流感病毒H1和H3、N1和N2亚型的2套多重PCR特异性引物,建立了猪流感H1N1、H1N2和H3N2亚型病毒多重RT-PCR诊断方法。采用该方法对H1N1、H1N2、H3N2亚型猪流感病毒标准参考株进行RT-PCR检测,结果均呈阳性,对扩增得到的片段进行序列测定和BLAST比较,表明为目的基因片段。其它几种常见猪病病毒和其它亚型猪流感病毒的RT-PCR扩增结果都呈阴性。对107EID50/0.1mL病毒进行稀释,提取RNA进行敏感性试验,RT-PCR最少可检测到102EID50的病毒量核酸。对40份阳性临床样品的检测结果是H1N1、H1N2和H3N2亚型分别为16份、1份和20份,其它3份样品同时含有H1N1和H3N2亚型猪流感病毒,和鸡胚分离病毒结果100%一致。试验证明建立的猪流感病毒H1N1、H1N2和H3N2亚型多重RT-PCR诊断方法是一种特异敏感的诊断方法,可用于临床样品的早期快速诊断和分型。  相似文献   

9.
本文报道了对西班牙养猪密集地区进行的猪流感病毒(SIV)血清学和病毒学调查结果,其目的是检测H1N2亚型猪流感病毒是否和在欧洲其它地区一样也流行于这些地区。在西班牙北部和东部地区100个未接种猪流感疫苗的繁育群采集了600份母猪血清,以进行抗H1N1、H3N2和H1N2亚型病毒的血凝抑制试验(HI);再借助鸡胚病毒分离法和商品薄膜免疫分析法,对采自有呼吸道疾患的225份病猪肺样本进行检测以确定是否存在猪流感病毒。通过HI和逆转录酶-聚合酶链式反应(RT-PCR)方法,再辅以cDNA部分序列的测定,对分离毒株进行鉴定。对血清所作的HI试验表明,在83%受测猪群和76·3%受测猪中至少存在抗一种猪流感病毒亚型的抗体。在受检的600份母猪血清中,仅含抗H1N2、H3N2或H1N1亚型病毒抗体的样本数分别为109份(占总样本比例的18·2%)、60份(10%)和41(6·8%)。从有呼吸道疾患的猪肺样本中分离到12株H3N2亚型病毒、9株H1N1亚型病毒和1株H1N2病毒。对H1N2亚型分离株的神经氨酸酶基因436个核苷酸序列进行的分析,进一步证实了其身份。显然,猪流感依然流行于所研究猪群中,同时一种新的亚型病毒(即H1N2亚型病毒)可能正在开始流行,并且也在西班牙引起了临床发病。  相似文献   

10.
11.
This paper reports on a serological and virological survey for swine influenza virus (SIV) in densely populated pig areas in Spain. The survey was undertaken to examine whether the H1N2 SIV subtype circulates in pigs in these areas, as in other European regions. Six hundred sow sera from 100 unvaccinated breeding herds across Northern and Eastern Spain were examined using haemagglutination inhibition (HI) tests against H1N1, H3N2 and H1N2 SIV subtypes. Additionally, 225 lung samples from pigs with respiratory problems were examined for the presence of SIV by virus isolation in embryonated chicken eggs and by a commercial membrane immunoassay. The virus isolates were further identified by HI and RT-PCR followed by partial cDNA sequencing. The HI test on sera revealed the presence of antibodies against at least one of the SIV subtypes in 83% of the herds and in 76.3% of the animals studied. Of the 600 sow sera tested, 109 (18.2%), 60 (10%) and 41 (6.8%) had SIV antibodies to subtype H1N2 alone, H3N2 alone and H1N1 alone, respectively. Twelve H3N2 viruses, 9 H1N1 viruses and 1 H1N2 virus were isolated from the lungs of pigs with respiratory problems. The analysis of a 436 nucleotide sequence of the neuraminidase gene from the H1N2 strain isolated further confirmed its identity. Demonstrably, swine influenza is still endemic in the studied swine population and a new subtype, the H1N2, may be becoming established and involved in clinical outbreaks of the disease in Spain.  相似文献   

12.
13.
The continuing outbreaks of avian influenza A H5N1 virus infection in Asia and Africa have caused worldwide concern because of the high mortality rates in poultry, suggesting its potential to become a pandemic influenza virus in humans. The transmission route of the virus among either the same species or different species is not yet clear. Broilers and BABL/c mice were inoculated with the H5N1 strain of influenza A virus isolated from birds. The animals were inoculated with 0.1 mL 106.83 TCID50 of H5N1 virus oronasally, intraperitoneally and using eye drops. The viruses were examined by virological and pathological assays. In addition, to detect horizontal transmission, in each group, healthy chicks and mice were mixed with those infected. Viruses were detected in homogenates of the heart, liver, spleen, kidney and blood of the infected mice and chickens. Virus antigen was not detected in the spleen, kidney or gastrointestinal tract, but detected by Plaque Forming Unit (PFU) assay in the brain, liver and lung without degenerative change in these organs (in the group inoculated using eye drops. The detection results for mice inoculated using eye drops suggest that this virus might have a different tissue tropism from other influenza viruses mainly restricted to the respiratory tract in mice. All chicken samples tested positive for the virus, regardless of the method of inoculation. Avian influenza A H5N1 viruses are highly pathogenic to chickens, but its virulence in other animals is not yet known. To sum up, the results suggest that the virus replicates not only in different animal species but also through different routes of infection. In addition, the virus was detection not only in the respiratory tract but also in multiple extra‐respiratory tissues. This study demonstrates that H5N1 virus infection in mice can cause systemic disease and spread through potentially novel routes within and between mammalian hosts.  相似文献   

14.
We report the earliest recognized fatality associated with laboratory-confirmed pandemic H1N1 (pH1N1) influenza in a domestic cat in the United States. The 12-year old, indoor cat died on 6 November 2009 after exposure to multiple family members who had been ill with influenza-like illness during the peak period of the fall wave of pH1N1 in Pennsylvania during late October 2009. The clinical presentation, history, radiographic, laboratory and necropsy findings are presented to assist veterinary care providers in understanding the features of this disease in cats and the potential for transmission of infection to pets from infected humans.  相似文献   

15.
16.
Avian influenza A H5N1 infections in cats   总被引:1,自引:0,他引:1  
Although cats had been considered resistant to disease from influenza virus infection, domestic cats and large felids are now known to be naturally und experimentally susceptible to infection with highly pathogenic avian influenza virus H5N1 (HPAIV H5N1). The virus causes systemic infection, lung and liver being the mainly affected organs. Infected cats show fever, depression, dyspnoea, and neurological signs, but subclinical infections have also occurred. Mostly, cats have been infected by direct contact with affected birds, especially by eating raw poultry; transmission from cat to cat may also occur. Little is known about the role of cats in the epidemiology of the virus. So far, no reassortment between avian and mammalian influenza viruses has occurred in cats, but experts fear that cats might give the virus an opportunity to adapt to mammals. This publication gives a review on avian influenza in cats with a focus on practical aspects for veterinarians.  相似文献   

17.
Influenza viruses have been isolated from dogs in China; however, the extent of influenza infection among dogs is not yet clear. Here, we examined the seroprevalence of avian-origin canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in pet dogs in China during January 2012 to June 2013. The seropositivity rate of canine H3N2, H1N1/09 and human H3N2 were 3.5%, 1.5%, and 1.2%, respectively. Dogs aged 2–5 years were most commonly seropositive to canine H3N2 virus. It is worth noting that two serum samples were positive against both canine H3N2 and H1N1/09 viruses, suggesting the possibility of coinfection with both viruses. Our findings emphasize the necessity for continued surveillance of influenza viruses in dogs in China.  相似文献   

18.
19.
20.
Striped skunks (skunks) are susceptible to respiratory infection by influenza A viruses (IAV). As they are common synanthropes, maintenance of IAV in skunks could provide a source of infection for humans. We previously studied the nasal turbinates, lungs and faeces of 50 free‐ranging skunks for the presence of IAV and identified two individuals with influenza A(H1N1)pdm09 infection during the 2009/2010 and 2013/2014 flu seasons. Subsequent to publication of that study, ferrets were shown to preferentially replicate and harbour A(H1N1)pdm09 in the soft palate, a site which had not been investigated in the skunks. From March 2015 to May 2016, we surveyed a convenience sample of 80 free‐ranging urban skunks for IAV in soft palate, nasal turbinates and lungs. The newly emergent influenza A(H1N1)pdm09 clade 6B.1 was detected at all three sites in one skunk with acute rhinitis in February 2016. Clade 6B.1 was the dominant clade in circulation during the 2015/2016 flu season. As the skunk was detected at the height of flu season, reverse zoonosis was considered the most probable source of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号