首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 612 毫秒
1.
基于预瞄追踪模型的农机导航路径跟踪控制方法   总被引:17,自引:12,他引:5  
农机导航系统的上线性能和复杂路面抗干扰能力影响着农田作业的质量和效率,为提高农机导航系统的上线速度、上线稳定性和对复杂路面的适应性,提出了一种预瞄追踪模型的农机导航路径跟踪控制方法。该方法实质是对农机运动学模型方法的改进,针对农机运动学模型小角度线性化算法中近似条件的缺点,采用预瞄追踪辅助直线引导农机快速稳定跟踪规划路径。该文参考农机运动学模型极点最优配置算法证明过程,分3步证明了该控制方法的可行性,并通过仿真和试验验证了该方法的有效性。仿真结果显示在不同的初始位置偏差和航向偏差条件下该方法都可以迅速消除偏差以稳定跟踪规划路径,位置偏差校正曲线平滑且超调量微小,说明预瞄追踪模型方法对提高农机导航系统的上线性能和抗干扰能力是有效的。田间试验结果:在初始航向偏差为0,初始位置偏差分别为0.5、1、1.5 m条件下,上线时间分别为6.8、8.2、9.4 s,上线距离分别为6.73、8.11、9.33 m,超调量分别为5.2、7.0、8.5 cm;颠簸不平旱地路面直线路径跟踪的最大误差不超过4.23 cm,误差绝对值的平均值为1 cm,标准差为1.25 cm。数据表明采用该文提出的控制方法具有良好的上线和直线路径跟踪效果,满足农业机械的导航作业要求。  相似文献   

2.
基于速度自适应的拖拉机自动导航控制方法   总被引:3,自引:3,他引:0  
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

3.
针对现有单边制动履带车辆跟踪控制算法同周期内并行控制难、跟踪精度低、转向控制次数较多等问题,该研究以电控化改装后江苏筑水农机 3B55 型履带运输车为试验平台,开展单边制动履带车辆路径跟踪控制算法研究。通过单边制动履带车辆运动学分析,构建车辆预瞄跟踪模型,提出一种预瞄跟踪模糊控制算法,将横向偏差与航向偏差作为多输入输出模糊控制器输入参数,实现车辆同一控制周期内转向与直线行驶的并行控制。为了优化车辆路径跟踪精度与转向控制次数,提出改进麻雀搜索算法(sparrow search algorithm, SSA)的自适应前视距求解算法,考虑车辆的横向偏差和转向路径角度约束,解析较优前视距离,通过仿真和田间试验对算法进行跟踪精度与转向控制次数综合评价。仿真结果表明:基于自适应预瞄跟踪模糊控制算法跟踪多角度规划路径时,车辆转向控制次数为89次,误差面积为1.74 m2。田间作业路况下,由于试验路面起伏不平,并且随速度增加车辆跟踪精度下降,但跟踪精度及转向控制次数随前视距离的变化规律与仿真结果一致,当车辆分别以0.14、0.47和0.83 m/s跟踪路径时,自适应预瞄跟踪模糊控制算法相对于固定前视距离预瞄跟踪模糊控制算法车辆转向控制次数分别减少13.59%、9.87%和11.25%,误差面积分别减少19.93%、48.48%和54.59%,验证了算法的有效性。研究结果可为单边制动履带车辆的农机自动导航技术提供创新思路与技术支撑。  相似文献   

4.
雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计   总被引:16,自引:14,他引:2  
为减少农药喷雾作业对人体造成的化学损害,该研究以雷沃高地隙喷杆喷雾机为平台,基于GNSS开发了自动导航作业系统,实现喷雾机在极少人工干预情况下的自动导航作业。通过对平台的机-电-液改造,实现了喷雾机作业系统的电气化控制。基于简化的二自由度车辆转向模型设计了以位置偏差和航向偏差为状态变量的直线路径跟踪控制算法,基于纯追踪模型设计了曲线路径跟踪控制算法。根据喷雾机田间作业需要设计了喷雾机一体化自动导航作业控制方法,使系统能够自动控制喷雾机完成直线、地头转弯行驶和喷雾作业,油门调节以及车辆启停控制。在1.3 m/s左右的前进速度条件下,分别在水泥路面、旱田、水田环境中进行了试验,测试结果表明:水泥路面车身横滚在–1.6?~1.5?范围,直线路径跟踪误差最大值为3.9 cm,平均值为-0.15 cm,标准差为1.0 cm;旱田地块车身横滚在–1.4?~3.3?范围,跟踪误差最大值为9.8 cm,平均值为1.3 cm,标准差为3.3 cm;水田环境车身横滚在–2.4?~5.2?范围,跟踪误差最大值为17.5 cm,平均值为2.2 cm,标准差为4.4 cm。试验数据表明,所设计的自动导航作业系统初始上线快速、地头转弯对行平顺、各设计功能执行可靠;导航系统具有良好的稳定性和控制精度,能够满足水田、旱田环境下的喷雾作业要求。  相似文献   

5.
基于GNSS的农机自动导航路径搜索及转向控制   总被引:8,自引:8,他引:0  
为提高农机自动导航系统性能,提出了一种基于全球导航卫星系统(global navigation satellite system,GNSS)的农机自动导航路径搜索方法和基于预瞄点搜索的纯追踪模型。根据农机不同作业需求,导航系统可选择直线路径搜索或曲线路径搜索,实现农机直线和曲线自动导航作业;建立基于预瞄点搜索的纯追踪模型,并将其用于农机转向控制,该模型不涉及复杂的控制理论,适用性较强。为验证路径搜索方法和纯追踪模型性能,以John Deere拖拉机为试验平台,进行了农机直线跟踪和转向控制导航试验。结果表明:直线路径跟踪导航试验,车速为0.8、1.0和1.2 m/s时,导航均方根误差分别为3.79、4.28和5.39 cm;转向导航试验,车速为0.6 m/s时,在弓形转弯和梨形转弯导航方式下,导航均方根误差分别为25.23和14.42 cm;与模糊控制方法对比试验,直线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为4.30和5.95 cm,在曲线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为13.73和21.40 cm;基于GNSS的农机自动导航路径搜索方法和预瞄点搜索的纯追踪模型可以得到较好的定位控制精度,可满足田间实际作业的要求。  相似文献   

6.
为了提高垄耕模式的无人四驱四转(four-wheel independent driving and four-wheel independent steering,4WID-4WIS)移动作业平台路径跟踪控制精度和稳定性,该研究提出一种基于非线性干扰观测器(nonlinear disturbance observer,NOB)的路径跟踪控制策略。考虑到转弯区域跟踪误差较大,引入原地转向数学模型,设计基于原地转向的航向角PI控制与纯追踪控制的切换控制策略,以实现转弯路径精准跟踪。在此基础上,根据横向偏差和路径弯曲度,设计基于前视距离函数的纯追踪算法及模糊比例补偿器,构建基于NOB的前馈补偿器,以减小上线距离和位置超调。最后对所设计的跟踪控制策略进行仿真和试验验证,结果表明:与传统纯追踪控制相比,所设计的路径跟踪控制策略在3种初始横向偏差下,上线距离、超调、全线平均绝对误差分别减小了32.2%~43.4%、0~42.4%和27.7%~49.5%,且曲线区域平均绝对误差减小33.7%~39.5%;在颠簸硬石板、草地、农田翻耕路况下的稳态区平均绝对误差分别减小了6.25%、33.3%和41.7%。该路径跟踪控制策略有效提高了系统鲁棒性和作业路径跟踪精度,可为垄耕模式的无人四驱四转农业机械导航系统开发提供创新思路和技术参考。  相似文献   

7.
小地块履带农机UWB导航系统设计及其基站布置   总被引:1,自引:1,他引:0  
针对中国南方分布零散和土壤黏重的稻麦、稻油轮作区小地块长期使用轮式农机导致深泥脚现象加重造成自主导航性能变差且卫星导航面对普通大众使用门槛高用户友好性欠缺、难以满足便捷跨区作业要求,该研究以履带农机为研究对象,提出一种基于快速稳态转向原理的路径跟踪控制方法,以农田边界布置随插近距超宽带(UWB,Ultra Wide Band)基站组作为参照路径设计了具备基站偏移误差自诊断自主导航系统,实现小地块内高精度自主导航。近距UWB基站布置最佳方式选取与优化结果表明:双UWB基站平行农机于目标作业路径布置在农田外侧是最佳方式且距农田边界最佳临界距离为10 m。静态校正试验结果表明:快速稳态转向路径校正控制器的跟踪控制误差≤1 cm,变异系数<5%,路径校正时间≤1 s,变异系数<3%。动态校正试验结果表明:中低车速的直线作业精度误差≤8 cm,随作业车速增大,直线作业精度略有降低,但精度误差≤10 cm,变异系数≤5%。研究结果表明,改进AOA模式大田农机自主导航位姿检测方法与快速稳态路径校正控制策略组合导航具有较高的稳定性和较好的鲁棒性,可满足大田农机自主导航作业需求。研究结果可为高精度小地块农田自主导航技术研究提供参考。  相似文献   

8.
拖拉机自动导航变曲度路径跟踪控制   总被引:2,自引:2,他引:0  
针对当前拖拉机自动导航曲线跟踪控制精度不能满足生产需要的问题,该研究提出一种基于前轮转角前馈补偿策略的变曲度路径跟踪控制方法。综合考虑农机作业速度和目标路径曲度对前视距离的影响,通过调整前视区域和计算预瞄点,动态调整前视距离和前轮转角前馈量,在追踪预瞄点的过程中,利用农机与目标路径偏差设计变曲度路径跟踪模糊控制器,通过实时调整拖拉机前轮转角补偿量减小稳态误差。以DF2204无级变速拖拉机为试验平台,设计并研发了自动导航系统,开展21组变曲度路径跟踪控制试验。试验结果表明,拖拉机以1、1.5、2和3 m/s速度行驶时的平均绝对误差的平均值分别为2.7、2.7、3.3和4.0 cm,均方根误差的平均值分别为3.4、3.7、4.6和5.0 cm,满足农业生产需求。所提方法可有效提高农机曲线路径跟踪精度,减少漏耕,提高农田利用率。  相似文献   

9.
农田环境中农作物大多呈近似直线的行垄分布特点,农用车辆自主视觉导航时通常利用这些景物特征作为跟踪目标。提出了一种计算车辆相对于跟踪目标位姿的新型方法,首先分析了传统算法中存在的计算量大、忽视图像平面中各像素权重不同等缺陷,而后依据跟踪路径局部线性模型假设,详细地推导了算法过程。基于视觉导航原型车辆的试验结果表明,与人工测量值相比,横向距离和航向角的误差均值都等于零,标准差分别为3cm 和0.62deg。  相似文献   

10.
为提高农业车辆导航路径自动跟踪精度,提出一种基于线性时变模型预测控制的路径跟踪方法。该方法将农业车辆非线性运动学模型线性化和离散化处理,作为控制器预测方程;建立以系统控制增量为状态量的目标函数,为防止无可行解,引入松弛因子;设计系统控制量、控制增量和状态量约束条件,并将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将求得的控制输入增量第一个元素作用于系统;重复以上过程,实现优化控制。基于Matlab/Simulink平台进行了模型预测控制器设计,并分别进行了导航坐标系下的直线和圆形路径跟踪试验。结果表明,所设计的控制器能够实现直线路径的完全跟踪(误差始终为0);跟踪圆形路径时,1 m/s时的横向平均跟踪误差为7.5 cm,3 m/s时的横向平均跟踪误差为10 cm;整个跟踪过程,前轮转角始终被限定在约束范围内。不同控制器参数下的仿真结果表明,增大预测时域和控制周期能够减小跟踪误差和前轮转角变化幅度,控制时域的变化对控制器路径跟踪响应速度影响较小。同时基于设计的模型预测控制器进行了场地试验。结果表明,试验小车以1m/s的速度跟踪直线路径时,横向最大误差均值为1.622 cm,横向平均误差均值为0.865 cm;跟踪圆形路径时,当行走速度低于1 m/s时,横向最大误差小于10 cm。  相似文献   

11.
为了实现智能小车在各种不同的路径下稳定高效的进行图像导航,该文以自主设计了满足于设施农业用的四轮独立驱动的高地隙小车作为平台,采用TI公司的TMS320DM642高性能数字多媒体处理器为核心处理器,建立了识别路径的视觉检测系统,实现了对多种路径标识的实时采集和图像显示,提出了用于实际路径检测的图像处理的改进算法,包括利用2G-R-B颜色特征识别绿色植物、中心线法提取路径、双折线拟合的Hough变换提取路径、多折线拟合的Hough变换提取路径等,以实现小车的自主导航。试验结果表明所开发的路径识别与跟踪控制系统能对不同颜色的标识线、绿色植物与裸露地面的分界线等一系列路径进行识别和导航控制,系统适应性好、抗干扰能力强,稳定性高、实时性好,满足无人控制的农田作业需求,节省劳动力,提高生产效率。该研究可为应用于田间作业的高地隙小车的路径识别与跟踪控制系统设计提供参考。  相似文献   

12.
果园行间3D LiDAR导航方法   总被引:2,自引:2,他引:0  
为克服二维激光扫描仪在果园导航中感知信息少、无法有效应对树冠茂密、树干被遮挡等复杂三维果园场景,该研究提出一种基于3D LiDAR的果园行间导航方法。以3D LiDAR为检测设备实时采集果园信息,使用挖空打断后的树墙体心等效树干位置,根据左右树行的最佳平行度对随机采样一致性算法与最小二乘法拟合的树行进行互补融合并求其中心线得到导航线;对纯跟踪算法进行改进,实现差速运动机器人对树行的跟踪。结果表明:系统在篱壁式仿真果园环境下以0.33 m/s的速度沿中心线行走时,绝对航向定位偏差在1.65°以内,绝对横向定位偏差在6.1 cm以内;以0.43 m/s的速度跟踪树行的绝对横向偏差在15 cm以内。在真实梨园下,系统分别以0.68与1.35 m/s的速度跟踪树行,绝对横向偏差分别不超过21.3与22.1 cm。本系统可广泛用于标准果园与复杂三维果园机械的自主导航,具有可靠的稳定性。  相似文献   

13.
小型履带式油菜播种机导航免疫PID控制器设计   总被引:9,自引:7,他引:2  
针对适应于长江中下游地区稻茬田土壤黏湿、小田块的轻简化播种机智能化问题,设计了一种基于免疫PID的小型履带式油菜播种机导航控制器。以小型履带式油菜播种机为基础,利用电磁铁对其转向系统进行电控改装,采用高精度北斗定位模块和电子罗盘进行组合导航,获取履带式播种机的位置和航向信息作为导航控制器的输入,设计了小型履带式油菜播种机自动导航控制系统。建立了履带式油菜播种机运动学模型和转向角传递函数,利用Matlab仿真和实地导航试验对常规PID控制和免疫PID控制进行了对比试验。仿真表明:在相同参数条件下,与常规PID相比,免疫PID控制具有响应快、超调量小、平均跟踪误差小等特点;路面试验表明:当播种机速度为0.50m/s时,免疫PID控制器直线跟踪的平均绝对偏差为4.2 cm,最大跟踪偏差为11.9 cm。田间试验表明:当播种机速度为0.50 m/s时,免疫PID控制器直线跟踪平均绝对偏差为5.8 cm,最大偏差不超过15.2 cm,能够较好地满足播种机导航作业要求,该研究可为履带式播种机的自主导航提供了技术参考。  相似文献   

14.
联合收获机单神经元PID导航控制器设计与试验   总被引:5,自引:4,他引:1  
针对联合收获机在田间直线跟踪作业中在维持高割幅率条件下易产生漏割的问题,设计了一种基于单神经元PID(Proportion Integration Differentiation)的联合收获机导航控制器。以轮式联合收获机为平台,通过对原有液压转向机构进行电控液压改装,搭载相关传感器构建了导航硬件系统。开展了常规PID控制和单神经元PID控制的仿真以及实地对比试验,仿真结果表明单神经元PID控制具有超调小和进入稳态快等特点;路面试验表明,当收获机速度为0.7 m/s时,单神经元PID控制最大跟踪偏差为6.10 cm,平均绝对偏差为1.21 cm;田间试验表明,收获机速度为0.7 m/s时,单神经元PID控制田间收获最大跟踪偏差为8.14 cm,平均绝对偏差为3.20 cm。试验表明所设计的联合收获机导航控制器能够满足自动导航收获作业要求,为收获作业自动导航提供了技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号