首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
口蹄疫病毒利用整联蛋白作为病毒受体进入宿主细胞。本试验在国际上首次从口蹄疫病毒感染猪的舌皮组织中克隆到了β8亚基基因,并对其核苷酸序列和推导的氨基酸序列进行了比较分析。猪β8亚基基因的编码区含有2 304个核苷酸,编码767个氨基酸,其中信号肽由42个氨基酸组成,胞外域由637个氨基酸组成,含有7个潜在的糖基化位点(NXT/NXS)和49个半胱氨酸残基,跨膜区由30个氨基酸组成,胞浆域由58个氨基酸组成,猪β8基因与牛、人、犬、猕猴、家鼠和挪威大鼠的β8基因核苷酸序列同源性分别为94.3%、91.4%、91.7%、91.4%、83.5%、83.5%,推导的氨基酸序列同源性分别为95.0%、91.8%、92.8%、91.5%、84.0%、84.8%。猪与牛β8亚基同源性最高。猪β8亚基存在复杂多变的二级结构,其中1-42、680-709位氨基酸区段疏水性较强,形成表面蛋白结构的可能性较小,分别是该亚基的信号肽和跨膜区。本试验为进一步深入研究β8亚基在口蹄疫感染过程中所扮演的角色奠定了基础。  相似文献   

2.
试验旨在探明从江香猪β-干扰素(interferon-beta,IFN-β)基因编码区分子序列及原核表达产物特征。以从江香猪为研究对象,提取肝脏总RNA并反转录为cDNA,设计特异性引物扩增IFN-β基因编码区,将目的基因片段克隆至原核表达质粒pET-28a上,获得重组质粒pET28a-CJpoIFN-β,并利用生物学软件对江香猪IFN-β基因编码区进行序列分析;将鉴定正确的重组质粒pET28a-CJpoIFN-β转化大肠杆菌BL21(DE3)感受态细胞,经IPTG诱导表达、SDS-PAGE与Western blotting分析原核表达蛋白。结果表明,从江香猪IFN-β基因编码区长为561bp,编码186个氨基酸;该蛋白为分泌性蛋白,前21个氨基酸为信号肽序列;二级结构主要以α-螺旋(77.42%)和无规则卷曲(17.74%)为主。从江香猪与其他猪源IFN-β基因核苷酸序列同源性为99.5%~100.0%,与禽的同源性最低(35.2%);从江香猪与巴马猪、梅山猪IFN-β氨基酸同源性均为100.0%,但与贵州白香猪IFN-β同源性为99.5%,存在E43Q、K73R和C161R3处氨基酸的差异。Western blotting结果显示,带His标签的重组表达蛋白能被His单抗识别,条带大小约为24ku。本试验结果为进一步研究IFN-β基因生物学活性及加快从江香猪这一品种资源的有效利用提供参考依据。  相似文献   

3.
根据发表的哺乳类抑制素 /活化素 βB亚基 c DNA序列设计引物 ,运用 RT- PCR技术从仙居鸡卵泡的颗粒细胞总RNA中扩增出抑制素 /活化素βB亚基成熟区序列 ,并进行了克隆和测序。结果显示 ,鸡成熟βB亚基是由 115个氨基酸(aa)残基组成的蛋白质 ,具有 9个半胱氨酸残基 ,与发表的哺乳类相应序列对比 ,其核苷酸序列的同源性为 79.7%~82 .9%,其编码氨基酸序列的同源性为 95 .7%~ 98.3%。 βB亚基成熟区半胱氨酸残基的数目和位置与发表的哺乳类相同。说明该亚基的序列及结构在不同物种间具高度保守性 ,提示抑制素 /活化素 βB亚基可能具重要的生理功能。  相似文献   

4.
牛口蹄疫病毒受体β6亚基的基因克隆和分子特征   总被引:1,自引:0,他引:1  
从口蹄疫病毒(Foot-and-mouth disease virus,FMDV)感染康复牛的舌皮组织中克隆到了β6亚基基因并对其核苷酸序列和推导的氨基酸进行了比较分析。牛β6基因的编码区含有2367个核苷酸,编码788个氨基酸残基,其中信号肽由26个氨基酸组成(1~26aa);胞外域由681个氨基酸组成,含有10个潜在的糖基化位点(NXT/NXS)和51个半胱氨酸(Cys)残基;跨膜区由29个氨基酸组成(708~736aa);胞浆域由52个氨基酸组成,含有1个NPLY核心基序,该基因在GenBank中的登录号为DQ867017。牛β6基因与羊、猪、人、小鼠、挪威大鼠β6基因的核苷酸序列同源性分别为97.0%、91.6%、88.6%、82.5%和82.7%,推导的氨基酸序列同源性分别为97.1%、93.7%、93.0%、89.2%和89.2%。口蹄疫病毒自然宿主(牛、羊、猪)的β6亲缘关系较近,提示β6亚基可能与口蹄疫病毒的宿主范围有关。  相似文献   

5.
采用 RT-PCR 结合克隆测序的方法,从猪肌肉组织总 RNA 中克隆出了猪组织蛋白酶 B(Cathepsin B,CTSB)基因的 cDNA 序列,并推导出其编码的氨基酸序列.猪 CTSB 基因开放阅读框(ORF)全长1 008 bp,编码335 个氨基酸.同源性分析结果表明,猪与人、鼠、牛的 CTSB 基因 cDNA 编码区(CDS)同源性分别为 85%、81%、90%,推测的氨基酸序列同源性分别为 81%、79%、91%.利用同源性结合序列特征预测表明该蛋白具有信号肽和前肽序列.蛋白质结构同源建模分析表明,该蛋白具有木瓜蛋白酶家族的典型空间结构,包括1个底物结合凹槽和3个相互靠近的活性位点.另外采用 PCR-SSCP 方法,在147头个体中分析了CTSB基因第6内含子内的SS-CP位点多态性,检测到3个等位基因6种基因型.FF基因型个体的各项嫩度指标最高,其最大剪切力与硬度值分别为6.56 kg和23.55 kg·s,极显著地高于 EE 和 EF 基因型个体(P<0.01),平均剪切力为4.85 kg,显著地高于EF基因型个体(P<0.05).  相似文献   

6.
《中国兽医学报》2016,(3):395-400
为研究猪CD74分子特性和功能,应用RT-PCR和RACE(rapid amplification of cDNA Ends)技术从猪脾脏细胞中克隆了完整的猪CD74基因。根据已知的部分CD74基因保守区序列,自行设计1对简并引物,扩增CD74较为保守的部分基因片段,根据测序结果设计系列引物扩增CD74基因,最后根据全基因测序结果设计1对特异性引物扩增猪CD74全长基因。分析和比对测序结果显示,完整的猪CD74基因全长存在1 145、1 337nt 2种类型,对应编码阅读框为651、843nt,分别编码217和281个氨基酸,提示猪CD74存在2种异构体结构。氨基酸序列研究表明,猪CD74与其他物种的CD74分子存在类似的胞浆区、跨膜区、内质网区和甲状腺区等功能区,存在L7I8和P15M16L17两个内体定位基元,内质网区包含CLIP区和三聚体区等结构域,异构体1 337nt较1 145nt多了编码64个氨基酸的Tg区。遗传进化分析显示,猪CD74与哺乳类物种间存在较高同源性,可达57%~82%,与禽类的CD74同源性为45%~51%,与鱼类、爬行类物种同源性最低仅为25%~34%。3D模拟结构显示,猪CD74与小鼠、人及禽类CD74存在类似的结构域,其中在一些关键部位氨基酸基本相同。  相似文献   

7.
为研究猪BST-2基因的生物学功能,用特异性的引物扩增猪BST-2基因,并利用生物信息学软件对猪BST-2基因及氨基酸进行分子特性分析,同时进行了猪BST-2蛋白的真核表达及组织表达谱分析。结果表明:猪BST-2基因全长851bp,其中5′-UTR为23bp,3′-UTR为294bp,CDS区为534bp,编码177个氨基酸,猪源BST-2蛋白氨基酸序列与大猩猩、仓鼠、家鼠、驴、猫、牛、猕猴、绵羊、人BST-2蛋白氨基酸序列同源性分别为46.1%,41.7%,39.5%,35.4%,42.0%,40.5%,44.4%,38.7%,46.8%。含有2个跨膜结构(27~49aa和154~176aa),2个潜在的糖基化位点,14个潜在的磷酸化位点,包含磷酸激酶ATM、CKⅡ、PKA、PKC的结合位点。构建真核质粒并转染发现猪BST-2蛋白能够在Vero细胞内正确表达。半定量PCR检测发现BST-2基因在所有组织中均有表达,尤其是在免疫组织及器官(淋巴结、胸腺、扁桃体、脾)、大肠、小肠中的表达量较高。本试验为今后进一步分析验证猪BST-2蛋白的抗病毒机制奠定了基础。  相似文献   

8.
猪CTSD全长cDNA的克隆和表达分析   总被引:1,自引:0,他引:1  
以人CTSD mRNA全长序列为基序,在db EST库中搜索同源性大于80%、重叠大于40个碱基的猪EST下载经Seqman软件装配后,利用RT-PCR扩增到猪CTSD基因部分cDNA序列,进一步通过RACE技术获得cDNA全长(GenBank登录号为DQ018727),猪CTSD基因cDNA全长2032 bp包括93 bp 5′UTR区、706 bp 3′UTR区和1 233bp ORF,编码410个氨基酸残基。其编码区与人、鼠、牛、羊CTSD编码区同源性分别为87.9%、78.2%、86.6%和85.0%,其氨基酸序列与人、鼠、牛、羊氨基酸序列同源性分别为86.6%、80.1%、86.0%和84.7%。疏水性分析和信号肽预测发现猪CTSD氨基酸序列存在至少7个疏水性区域,信号肽位点为第1-20个氨基酸残基。在NCBI进行Blast P搜索结果显示猪CTSD氨基酸结构中含有Asn(Asparagine,天门冬酰胺)结构域,与天冬氨酸蛋白酶3D结构同源性高达99.7%,具有真核生物天冬氨酸蛋白酶的典型结构。以猪多组织RNA池为模板,以1026 bp部分cDNA序列作为杂交探针进行Northern杂交,得到一条2000 bp左右特异条带,从而验证了RACE产物为全长cDNA并揭示该基因只有一个转录本。为了研究猪CTSD基因在体内不同组织内表达的特点,采用半定量RT-PCR对CTSD基因在猪10个组织中的表达进行研究,结果表明在10个组织中均有表达,且表达量与-βactin内参接近。  相似文献   

9.
羊驼KIT基因exon10-19 cDNA的克隆、表达及生物信息学分析   总被引:1,自引:0,他引:1  
从羊驼皮肤中提取总RNA,利用RT-PCR技术,扩增了羊驼显性白毛控制基因(KIT)cDNA序列(DQ450844),并与其它动物相应区域作了同源性比较,结果表明:羊驼KIT基因exon10-19 cDNA长1 044 bp,编码含347个氨基酸残基的蛋白;蛋白质同源性比较显示,羊驼与牛、羊、猪、人、马、猩猩等的同源性大于98%,与鼠的同源性为95%。羊驼aa2编码缬氨酸,而猪、人与牛等动物则编码异亮氨酸,均属于非极性氨基酸;羊驼aa201编码脯氨酸,是非极性氨基酸,而猪、人与牛等动物则编码丝氨酸,是不带电荷的极性氨基酸;羊驼aa344编码精氨酸,而猪、人与牛等动物则编码赖氨酸,均为带正电荷的极性氨基酸。蛋白质二级结构及功能分析结果显示:此二级结构中含有大量的α-螺旋;该蛋白编码肥大细胞/干细胞生长因子,属于酪氨酸激酶受体家族,其蛋白激酶活性位点位于248~260之间。本研究结果将为深入研究KIT基因与羊驼毛色遗传的关系奠定一定的理论基础。  相似文献   

10.
为了分析三穗麻鸭细胞因子信号传导抑制蛋白(suppressors of cytokine signaling,SOCS)基因分子特征,预测其编码蛋白的生物学功能,本试验对三穗麻鸭SOCS1基因进行PCR扩增、克隆及序列测定,应用生物信息学方法对三穗麻鸭SOCS1基因进行序列分析,并对其编码蛋白的二级结构、保守结构域、跨膜结构域、信号肽和三级结构进行预测。结果显示,三穗麻鸭SOCS1基因全长为624bp,可编码207个氨基酸;与大雁、原鸡、非洲爪蟾、猪、牛、人、大鼠和草鱼相应序列核苷酸序列同源性分别为97.6%、92.6%、68.3%、65.0%、64.8%、64.5%、63.5%和58.2%,氨基酸序列同源性分别为99.5%、96.6%、69.2%、64.0%、64.0%、67.9%、65.4%和50.8%;系统进化树显示,三穗麻鸭与大雁亲缘关系最近;编码蛋白的二级结构由无规则卷曲、α-螺旋、β-转角和延伸链组成,具有一个中央SH2区和SOCS盒,且无跨膜区和信号肽区域;三级结构呈弯曲螺旋结构。本试验结果为三穗麻鸭SOCS1基因编码蛋白的生物学功能研究奠定了理论基础。  相似文献   

11.
为分析羊口疮病毒(ORFV/QD/2015株)B2L基因的分子特征,预测其编码蛋白的生物学功能,对其B2L基因进行PCR扩增、克隆及序列测定,应用生物信息学相关软件及方法,对扩增所得的基因进行序列分析,并对其编码蛋白的二级结构、细胞抗原表位、三级结构、跨膜结构域和信号肽等进行预测和分析。结果显示:ORFV/QD/2015株B2L基因序列长1 137 bp,编码379个氨基酸;该毒株与其他12株羊口疮病毒参考株的B2L基因核苷酸序列同源性为96.8%~99.7%,氨基酸序列同源性为96.8%~99.2%。系统进化分析显示,ORFV/QD/2015株与2015年分离到的ORFV/Shaan Xi/2015/China株亲缘关系最近;B2L基因编码蛋白二级结构以α-螺旋区域和β-折叠区域所占比例较大,预测此蛋白可能存在7个细胞优势抗原表位,无跨膜区域,无信号肽区域;三级结构呈弯曲状螺旋结构。  相似文献   

12.
猪伪狂犬病病毒受体nectin-2基因的克隆与分子特征   总被引:1,自引:1,他引:0  
为了进一步了解猪nectin-2基因的结构与功能,本研究采用生物信息学结合RT-PCR的方法从猪脑组织中克隆到了猪nectin-2基因,并对其核苷酸序列和推导的氨基酸序列进行了比较分析.猪nectin-2基因的编码区含有1440个核苷酸,编码479个氨基酸,其中信号肽由32个氨基酸组成,胞外域由330个氨基酸组成,含有2个潜在的N-糖基化位点和6个半胱氨酸残基,跨膜区由23个氨基酸组成,胞浆区由94个氨基酸组成,猪nectin-2基因与犬、马、家鼠、人、恒河猴、牛、黑猩猩的nectin-2基因核苷酸序列同源性分别为85.4%、85.7%、78.6%、82.1%、82.1%、81.9%和82.1%;推导氨基酸序列的同源性分别为84.5%、83.0%、74.7%、75.7%、76.4%、78.4%和75.5%.本试验为进一步深入研究猪伪狂犬病病毒与宿主之间的关系奠定了基础.  相似文献   

13.
从口蹄疫病毒试验感染康复牛肺组织中克隆了β1亚基基因,并对其核苷酸和推导氨基酸序列进行了比较分析.结果显示,牛β1亚基基因的编码区含有2 397个核苷酸,编码798个氨基酸,含有10个潜在的糖基化位点,其中信号肽由20个氨基酸组成,胞外域由708个氨基酸组成,跨膜区由29个氨基酸组成,胞浆域由41个氨基酸组成.与GenBank中的牛β1基因的同源性达99.5%,从起始密码子开始共有12个碱基发生了变化,引起第217、247、268、281、321、691、709位的氨基酸改变,分别由F、S、W、V、H、Y、V变为S、P、R、G、Y、C、G.牛β1基因与猪、猩猩、猫、犬、人、小鼠和鸡的β1基因核苷酸序列同源性分别为93.8%、89.3%、91.6%、90.2%、89.6%、85.4%、75.6%,推导氨基酸序列同源性分别为98.2%、93.7%、97.5%、96.7%、94.2%、93.2%、84.1%.牛与猪β1亚基同源性最高.  相似文献   

14.
从江香猪IFN-β基因的序列分析及原核表达   总被引:1,自引:1,他引:0  
试验旨在探明从江香猪β-干扰素(interferon-beta,IFN-β)基因编码区分子序列及原核表达产物特征。以从江香猪为研究对象,提取肝脏总RNA并反转录为cDNA,设计特异性引物扩增IFN-β基因编码区,将目的基因片段克隆至原核表达质粒pET-28a上,获得重组质粒pET28a-CJpoIFN-β,并利用生物学软件对江香猪IFN-β基因编码区进行序列分析;将鉴定正确的重组质粒pET28a-CJpoIFN-β转化大肠杆菌BL21(DE3)感受态细胞,经IPTG诱导表达、SDS-PAGE与Western blotting分析原核表达蛋白。结果表明,从江香猪IFN-β基因编码区长为561 bp,编码186个氨基酸;该蛋白为分泌性蛋白,前21个氨基酸为信号肽序列;二级结构主要以α-螺旋(77.42%)和无规则卷曲(17.74%)为主。从江香猪与其他猪源IFN-β基因核苷酸序列同源性为99.5%~100.0%,与禽的同源性最低(35.2%);从江香猪与巴马猪、梅山猪IFN-β氨基酸同源性均为100.0%,但与贵州白香猪IFN-β同源性为99.5%,存在E43Q、K73R和C161R 3处氨基酸的差异。Western blotting结果显示,带His标签的重组表达蛋白能被His单抗识别,条带大小约为24 ku。本试验结果为进一步研究IFN-β基因生物学活性及加快从江香猪这一品种资源的有效利用提供参考依据。  相似文献   

15.
为分析猪葡萄球菌脱落毒素EXHC和SHETA基因结构并预测其所编码蛋白的结构和功能,本试验根据GenBank已报道的猪葡萄球菌脱落毒素EXHC和SHETA基因序列分别设计了1对特异性引物,从猪葡萄球菌GDZC株中扩增获得EXHC和SHETA基因片段,大小分别为1007和971 bp。序列分析结果表明,EXHC基因与猪葡萄球菌丹麦分离株(GenBank登录号:AF515455)及猪源松鼠葡萄球菌河北分离株(GenBank登录号:JF755400)的核苷酸序列、氨基酸序列同源性均为100.0%,而与其他葡萄球菌脱落毒素基因的核苷酸、氨基酸序列同源性分别为3.3%~53.9%和7.9%~44.2%。SHETA基因与日本分离株(GenBank登录号:AB036768)的核苷酸序列同源性为96.2%,氨基酸序列同源性为98.4%,在保守区共有31个碱基发生突变。利用DNAStar软件对EXHC和SHETA蛋白结构进行分析,结果显示EXHC基因编码的蛋白为亲水性蛋白,SHETA基因编码蛋白为疏水性蛋白,抗原性较差。本研究从猪葡萄球菌GDZC株中成功扩增获得EXHC和SHETA基因片段并对其编码的蛋白结构进行了预测,证实了中国分离的猪葡萄球菌同时携带有EXHC和SHETA 2种毒素基因,为进一步研究猪葡萄球菌的致病机理及毒素之间的相互作用提供了理论依据。  相似文献   

16.
为获得Marc145细胞源EDC3基因序列,分析其序列特征及编码蛋白的结构和功能,本试验采用RT-PCR方法从Marc145细胞中扩增EDC3基因,并进行克隆和序列测定;应用DNAStar软件分析该基因的核苷酸和氨基酸序列,与参考序列经BLAST比对后分析同源性,并构建系统进化树;利用生物信息学方法对其编码区蛋白进行二级结构、三级结构、B细胞表位、跨膜结构域和信号肽预测。结果显示,Marc145细胞源EDC3基因长度为1 527 bp,共编码507个氨基酸;EDC3基因编码区核苷酸序列与绿猴、猕猴、狒狒、人、倭黑猩猩、马、野猪、虎鲸、绵羊、非洲象和大熊猫的同源性在91.5%~99.2%之间,与非哺乳动物原鸡同源性最低,仅为81.2%;EDC3氨基酸序列与上述物种的同源性在95.3%~99.6%之间,与原鸡的同源性仅为88.8%。系统进化树结果显示,Marc145细胞源EDC3基因与绿猴的亲缘关系最近,其次是灵长类。蛋白结构预测结果表明,EDC3蛋白主要由α-螺旋和无规则卷曲组成,分别为23.38%和47.35%,二级结构与三级结构预测结果相符。该蛋白存在多个B细胞优势抗原表位,无跨膜结构域及信号肽区域。本试验结果可为Marc145细胞源EDC3基因功能的进一步研究提供参考。  相似文献   

17.
为获得Marc145细胞源EDC3基因序列,分析其序列特征及编码蛋白的结构和功能,本试验采用RT-PCR方法从Marc145细胞中扩增EDC3基因,并进行克隆和序列测定;应用DNAStar软件分析该基因的核苷酸和氨基酸序列,与参考序列经BLAST比对后分析同源性,并构建系统进化树;利用生物信息学方法对其编码区蛋白进行二级结构、三级结构、B细胞表位、跨膜结构域和信号肽预测。结果显示,Marc145细胞源EDC3基因长度为1 527bp,共编码507个氨基酸;EDC3基因编码区核苷酸序列与绿猴、猕猴、狒狒、人、倭黑猩猩、马、野猪、虎鲸、绵羊、非洲象和大熊猫的同源性在91.5%~99.2%之间,与非哺乳动物原鸡同源性最低,仅为81.2%;EDC3氨基酸序列与上述物种的同源性在95.3%~99.6%之间,与原鸡的同源性仅为88.8%。系统进化树结果显示,Marc145细胞源EDC3基因与绿猴的亲缘关系最近,其次是灵长类。蛋白结构预测结果表明,EDC3蛋白主要由α-螺旋和无规则卷曲组成,分别为23.38%和47.35%,二级结构与三级结构预测结果相符。该蛋白存在多个B细胞优势抗原表位,无跨膜结构域及信号肽区域。本试验结果可为Marc145细胞源EDC3基因功能的进一步研究提供参考。  相似文献   

18.
为研究猪恒定链(Ii)分子结构与功能,通过PCR扩增编码完整Ii及其异构体的基因片段,克隆至T pMD18-T载体,在对目的基因进行测序及分析其基因与编码蛋白分子结构,确定功能域及其分子遗传变异的基础上,构建pET-32a-Ii重组载体,转化BL21进行诱导表达,并分析表达产物的免疫活性。结果显示,PCR扩增了645bp和837bp的Ii及其异构体编码基因,DNA序列分析其编码氨基酸分别为215个和279个,异构体Ii多出了64个氨基酸构成的Tg区;分子结构分析显示,猪Ii分子由胞内区、跨膜区和胞外区3部分组成,包含有内体定位基元、Ii-key、CLIP、TRIM等功能域,其中内体定位基元含有特征性L7I和PML17双亮氨酸基序,Ii-key、CLIP、TRIM氨基酸序列与人和小鼠Ii具有高度一致性。遗传变异分析表明,猪Ii分子与人、小鼠等哺乳动物的Ii同源性为62.7%~95.6%,与鸡、鸭、鸽、鹅等禽类Ii的同源性为48.7%~49.5%;空间结构分析显示,猪Ii有3个相似的α-helix构成,其间间隔由相似氨基酸构成的2个转角,转角关键位点氨基酸具有高度一致性;Ii编码基因在BL21细胞获得了有效表达,目的蛋白大小约41ku,Western blot和免疫荧光检测显示,表达产物具有良好的反应原性。试验成功获得了猪Ii及其异构体编码基因,明确了其功能区、分子遗传变异等特征,诱导表达获得了具有良好免疫活性的Ii重组蛋白,为进一步研究猪Ii分子结构与功能奠定了基础。  相似文献   

19.
犬瘟热病毒A株N蛋白基因编码区的克隆与序列分析   总被引:2,自引:0,他引:2  
本试验对犬瘟热病毒 ( CDV) A株 N蛋白基因编码区进行了克隆与序列分析。结果表明 :CDV A株 N蛋白基因编码区核苷酸序列与Onderstepoor株。 A75/ 1 7株及 2 544/ han95株的同源性分别为 97.5%、94%及 93 % ,编码氨基酸的同源性分别为 98%、97%和 96%。  相似文献   

20.
糖原合酶激酶3β(glycogen synthase kinase 3β, GSK3β)是一种在机体内分布广泛且结构高度保守的丝/苏氨酸蛋白激酶。本研究利用电子克隆的方法克隆了猪GSK3β(sGSK3β)基因的编码区序列;用猪-仓鼠体细胞辐射杂种板(IMpRH)对其进行了染色体定位;用实时荧光定量PCR(qRT-PCR)的方法,以10个不同组织样品cDNA为模板对sGSK3β的组织表达谱进行了分析。研究结果表明,sGSK3β基因的编码区有1263个核苷酸,编码420个氨基酸,其氨基酸序列与人、大鼠、小鼠和斑马鱼同源性分别为95.6%、98.8%、98.8%、93.3%;sGSK3β基因定位于猪的13q41-46,与标记SW1876紧密连锁。组织表达谱分析结果表明sGSK3β基因在猪的10种组织中存在着表达量的差异,在肝脏和肺脏中高表达,在脂肪、肾脏、脾脏、大脑和小脑中次之,而在心脏、胃和肌肉中只检测到本底表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号