首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flyspeck symptoms were found on mango (Mangifera indica L.) in Okinawa Prefecture, Japan in June 2014. Just before harvest, surfaces of fruits and green branches developed groups of tiny black dots within dark smudges. A fungus was isolated from the dots on both fruits and branches. The isolates were identified as Stomiopeltis sp. based on pathogenicity, morphology and molecular phylogenetic analyses with rDNA-ITS and LSU sequences. This is the first report of flyspeck (susuten-byo in Japanese) on mango caused by Stomiopeltis sp. in Japan.  相似文献   

2.
Fenugreek is an annual leguminous crop grown for hay and grains in Tunisia. It is also considered a valuable rotation crop with cereals. Sclerotinia rot was observed in production fields since 2010. The survey conducted in 2013 revealed that the incidence of diseased plants varied between 5 and 20%. The identification of isolates of Sclerotinia obtained from fenugreek plants with symptoms of stem rot was determined using morphological and molecular criteria. The size, shape and abundance of sclerotia in potato dextrose agar (PDA) cultures were used to classify isolates as S. sclerotiorum or S. trifoliorum. A comparison of colony diameter on PDA after 24, 48 and 72 h at 25 °C, showed that one isolate grew faster (36 mm/day) than the other 10 isolates (14.8 mm/day). There was a significant difference in sclerotial size between the fast and the slow growing isolates, but there was no significant difference in the number of sclerotia produced after 3 weeks on PDA. Two of the slow growing isolates exhibited ascospore dimorphism, whereas the fast growing isolate did not. PCR amplification with the primer pair ITS5/ITS4 produced a fragment of 560 base pairs from the fast growing isolate and 1000 base pairs from all of the slow growing isolates. The ITS sequences of the fast growing isolate had 100% homology with S. sclerotiorum, whereas those of the slow growing isolates had 100% homology with S. trifoliorum. Isolates of both species were pathogenic on fenugreek seedlings in the greenhouse assay and there was no significant difference in the percentage of dead plants two weeks after inoculation between the two species.  相似文献   

3.
Rice false smut is heavily and increasingly occurring in subtropical zones in China in the past decades. The pathogen of the disease, Ustilaginoidea virens, can produce both chlamydospores and sclerotia, and the sclerotia seem to form frequently in temperate or high-altitude regions in China. Which of these structures play a dominant role in the pathogen’s life cycle in subtropical zones remains unclear. Here we found that Ustilaginoidea virens could produce a great number of sclerotia in subtropical zones and the maximal number of sclerotia could reach to 2.25 million per hectare. In the year with relatively low autumn temperatures, the disease severity and sclerotia numbers of U. virens increased significantly. Although there was a few sclerotia in subtropical zones capable of overwintering successfully, one individual sclerotium could produce large numbers of ascospores. In the rice-growing paddy field, the ascospores could be trapped in both temperate and subtropical zones in May–September, when rice was at the booting stage, the critical infection period of rice false smut. This suggested that the sclerotia of rice false smut in subtropical zone played an important role in the life cycle of Ustilaginoidea virens and acted as the primary inoculum. Experiments in the laboratory showed that mature sclerotia of rice false smut remained dormant for about 2–5 months, and that light was essential for fruiting body differentiation. As with ergot, the fruiting bodies of Ustilaginoidea virens secreted sticky droplets on the stromata that prevented the ascospores from dispersing into the air, implying that the transfer of ascospores of Ustilaginoidea virens to rice plants in paddy field needed an intermediary vector.  相似文献   

4.
Rhizoctonia cerealis causes sharp eyespot in cereals and the pathogen survives as mycelia or sclerotia in soil. Real-time Polymerase Chain Reaction (qPCR) assays based on TaqMan chemistry are highly suitable for use on DNA extracted from soil. We report here the first qPCR assay for R. cerealis using TaqMan primers and a probe based on a unique Sequence Characterised Amplified Region (SCAR). The assay is highly specific and did not amplify DNA from a range of other binucleate Rhizoctonia species or isolates of anastomosis groups of Rhizoctonia solani. The high sensitivity of the assay was demonstrated in soils using a bulk DNA extraction method where 200 μg sclerotia in 50 g of soil were detected. DNA of the pathogen could also be amplified from asymptomatic wheat plants. Using the assay on soil samples from fields under different crop rotations, R. cerealis was most frequently detected in soils where wheat was grown or soil under pasture. It was detected least frequently in fields where potatoes were grown. This study demonstrates that assays derived from SCAR sequences can produce specific and sensitive qPCR assays.  相似文献   

5.
In 1972, bacterial leaf spot of onion (BLSO) was first recorded in Japan by Goto. The pathogen was considered as a pathovar of Pseudomonas syringae specifically causing disease on onion and Welsh onion, but it has not been taxonomically investigated in detail. In 2012 and 2014, a disease suspected as BLSO re-emerged on onion in Shizuoka and Hyogo Prefectures, Japan, respectively. A pathogenic bacterium isolated from the infected onions was thought to be the BLSO agent after preliminary examinations. Strains isolated from BLSO in 1969, 1986, 1987, 2012 and 2014 were characterized and compared with the causal agent of bacterial blight of leek (P. syringae pv. porri), which causes similar symptoms on Allium plants. The result of rep-PCR distinguished the BLSO agent from P. syringae pv. porri. Multilocus sequence analysis on housekeeping genes and hrp genes encoding the type-III secretion system revealed that the strains of the BLSO agent clustered independently of P. syringae pv. porri. The BLSO agent and P. syringae pv. porri also differed in utilization of erythritol, dl-homoserine, glutaric acid and other bacteriological characteristics and caused different reactions on onion, Welsh onions, chives, shallot, rakkyo, leek, garlic and Chinese chive. Thus, the BLSO agent clearly differs from P. syringae pv. porri and is considered to be a new pathovar of P. syringae. The name P. syringae pv. alliifistulosi is proposed with pathotype strain ICMP3414.  相似文献   

6.
In Hokkaido potato fields, tubers produced from the plants with leaf curl symptoms caused by potato leaf roll virus (PLRV) were noted to be more densely covered with Rhizoctonia sclerotia. This observation led us to hypothesize that potato infected with PLRV would have an increased susceptibility to Rhizoctonia solani. To test this hypothesis, in a pot experiment, we inoculated PLRV-infected mother tubers with Rhizoctonia. As a result, PLRV-infected plants produced significantly fewer and smaller tubers than virus-free plants did, suggesting that PLRV-infected plants are more susceptible than virus-free plants to R. solani. Virus-free seed tubers should thus be used to reduce Rhizoctonia diseases.  相似文献   

7.
The taxonomic assignment of Japanese potato blackleg isolates of Dickeya spp. has not been confirmed after the changes in their former name, Erwinia chrysanthemi. Therefore, we investigated and identified 23 representative isolates of Dickeya spp. from symptomatic stems of potatoes in Japan, with biochemical tests and phylogenetic sequence analysis using recA, dnaX, rpoD, gyrB, and 16S rDNA sequences. Results of our biochemical tests showed that all isolates can be assigned to phenon 5 and biovar 1, which are associated with D. dianthicola. Based on the recA, dnaX, rpoD, gyrB, and 16S rDNA sequences, all isolates are in the same clade with D. dianthicola and were clearly distinguished from D. chrysanthemi, D. dadantii, D. dadantii subsp. dieffenbachiae, D. solani, D. zeae, and D. paradisiaca. Therefore, we conclude that Dickeya spp. isolated from potatoes with blackleg symptoms in Japan are D. dianthicola.  相似文献   

8.
The ability to control soil-borne pathogens in agriculture is highly conditioned by the restricted use of synthetic pesticides. Allelopathy, the antimicrobial activity of plant extracts, is a promising option against crop pathogens. Extracts from Lycium spp. such as L. barbarum, L. chinense and L. intricatum possess biological and therapeutic properties. Individual methanolic extracts from leaves and stems of the Mediterranean medicinal species L. europaeum collected in two locations of Tunisia were each evaluated in vitro against Verticillium dahliae (Vd), Sclerotinia sclerotiorum (Ss) and Harpophora maydis (Hm). The mycelial growth of the three fungi was significantly reduced by all the extracts at doses of 10 and 30 μl mL?1 (equivalent to 1 and 3 mg plant tissue mL?1). The sporulation of Hm was almost completely inhibited in all the amendments, but that of Vd was stimulated by one of the leaf extracts when 1 and 3 mg dried plant tissue mL?1 were used. Sclerotia of Ss were formed in a smaller number, their total weight increasing at extract doses equivalent to 1 mg plant tissue mL?1 and higher. In greenhouse, the pathogenicity of Hm was confirmed as early as 6 weeks after inoculation, since it caused significant decreases of weights in both roots and aboveground parts of maize. The detrimental effect of Hm on maize root weight in greenhouse was significantly counteracted by one of the leaf extracts added by watering. In total, 11 phenolic compounds were separated in the four extracts. The hydroxycinnamic acid family, including chlorogenic acid as a major compound, represented more than 50% of the total content in all the samples. Rutin was the most abundant flavonoid. The results of this work show the detrimental effect of L. europaeum extracts against the soil-borne pathogens Hm, Ss and Vd, and highlight their potential in crop protection if adequately developed into final products and used in combination with other tools.  相似文献   

9.
Sclerotium rolfsii (Sr), a soil-borne fungal pathogen, causes disease in a wide range of crops. Recently, we identified five actinomycetes (Streptomyces globisporus subsp. globisporus, S. globisporus, S. flavotricini, S. pactum, and S. senoensis) showing significant inhibitory effects on plant pathogens. In this study, the effects of the five actinomycetes for the biocontrol of Sr were investigated using the plate culture method and microscopy examination. Two actinomycetes with higher inhibitory effect were subsequently examined for the inhibition of sclerotial germination of Sr in unsterile soil in vitro. The cell-free cultures of five actinomycetes mediated significant inhibition of hyphal growth and sclerotial formation and germination of Sr. All actinomycete strains exhibited the ability to produce extracellular cell wall degrading enzymes in the culture conditions. The crude enzyme suspensions of S. flavotricini and S. pactum hydrolyzed the cell wall of Sr. At a dose of 1 g per kilogram soil, the solid formulations of S. flavotricini and S. senoensis prevented germination of 24% and 68% of sclerotia, respectively. Our results provide evidence of effective strains for the biocontrol of Sr, in addition to a further understanding of the underlying mechanism.  相似文献   

10.
Colletotrichum fungi belonging to the Colletotrichum gloeosporioides species complex include a number of economically important postharvest pathogens that often cause anthracnose. Until now, different species within this group could only be distinguished from one another reliably using multigenic phylogenetic analyses. Using a comparative genomics approach, we developed a marker that can differentiate Colletotrichum fructicola, Colletotrichum aenigma and Colletotrichum siamense within the C. gloeosporioides species complex based on PCR amplicon size differences. When we used this marker to classify 115 isolates collected over 20 years from strawberries in Chiba Prefecture, Japan, the isolates were predominantly C. fructicola. To our knowledge, this is the first report characterizing different species of Colletotrichum infecting strawberries in Japan and contributes to our understanding on the diversity of anthracnose pathogens in Japan.  相似文献   

11.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

12.
Colletotrichum fructicola is a major causal agent among anthracnose pathogens of strawberry in Nara, Japan. We hypothesized that a wide range of weeds growing in and around strawberry fields are inoculum sources of the disease and investigated their potential as hosts of C. fructicola. We also examined the influence of herbicide treatment on C. fructicola sporulation on weeds. The fungus was detected on 31 of 541 (5.7%) leaves sampled from 13 weed species from 2005 to 2008. The fungus was most frequently isolated from leaves of Amaranthus blitum with an isolation frequency of 17.9%; inoculation of A. blitum with the pathogen caused brown leaf spots. Other weeds such as Digitaria ciliaris, Galinsoga ciliata, Solidago altissima, Erigeron annuus, and Sonchus oleraceus were found to harbor the fungus at lower rates (4.3–8.1%) without symptoms. C. fructicola formed acervuli on leaves of A. blitum, D. ciliaris, and S. oleraceus after plants were killed by a herbicide (glyphosate). These results demonstrated that infected weeds associated with strawberry cultivation are potential inoculum sources of C. fructicola, especially after herbicide treatment.  相似文献   

13.
A severe outbreak of southern blight disease of China aster was observed during the post rainy season (September–November 2015) in the Mysore and Mandya Districts of Karnataka, Southern India. The disease incidence ranged between 12 and 47%. The typical disease symptoms include water-soaked lesions on leaves, stems and on the lower stem surfaces followed by quick wilting of the whole plant with abundant production of sclerotia near the stem-soil interface. The associated fungal pathogen was isolated on potato dextrose agar (PDA) medium, on which numerous reddish-brown sclerotia were seen. A total of 26 fungal isolates were isolated and studied for the mycelial compatibility. Isolate SrCCM 1 was used for pathogenicity analysis. The results of the study showed that, there was no variation among the isolates tested. Molecular identification of the pathogen by ITS-rDNA sequences of S. rolfsii showed 100% similarity with reference sequences. Based on the cultural, morphological and molecular characteristics, the fungal pathogen was identified as Sclerotium rolfsii Sacc. (Sexual morph: Athelia rolfsii (Curzi) C.C. Tu & Kimbr). Pathogenicity tests were performed on healthy leaves, roots and stems. Typical disease symptoms on leaves, stems and roots were evident after 5, 8 and 10 days of post-inoculation. Sclerotium rolfsii is known to cause diseases in economically important crop plants. However, no reports are available on the occurrence of S. rolfsii on China aster in India.  相似文献   

14.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

15.
Ear rot with white or pink mold was found on corn (Zea mays L.). A species of Fusarium, not registered previously as a pathogen causing Gibberella ear rot of corn in Japan, was isolated from the rotted ear. The isolates, identified as F. asiaticum based on morphological characteristics and nucleotide sequences, caused white or pink mold on corn ear after inoculation. Moreover, the 3-acetyl deoxynivalenol chemotype and the nivalenol chemotype were found in the isolates. We propose to include F. asiaticum as one of the pathogens causing Gibberella ear rot of corn in Japan.  相似文献   

16.
The aim of the present study was to assess diversity in the Botryosphaeriaceae on trees and fruit of mango (Mangifera indica L.) in a semi-arid region in northeastern Brazil in which most exported fruit in the country are produced. Using morphological characteristics and DNA sequence data (ITS-1, ITS-2 and 5.8S rDNA) we confirmed the presence of Lasiodiplodia theobromae in the region, and for the first time report Fusicoccum aesculi and Neofusicoccum parvum. L. theobromae was prevalent in the Assú Valley and F. aesculi and N. parvum were in the São Francisco Valley. In fruit inoculations, L. theobromae and N. parvum were more virulent than F. aesculi.  相似文献   

17.
The virulence of 29 isolates of Phytophthora infestans collected in potato fields in Hokkaido, Japan, in 2013 and 2014, was tested for race identification. Thirteen different races were identified, each of which had five to eight virulence factors. All of the isolates caused a virulent reaction against plants with R1 and R7, and most of the isolates caused a virulent reaction against plants with R3, R4, R10, and R11. On the other hand, no isolate was virulent against plants with R9. These results demonstrate that the current Japanese P. infestans population is more complex than the population in the 1990s from the viewpoint of race.  相似文献   

18.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

19.
This is the first report of Alternaria leaf spot disease on coriander (Coriandrum sativum L.) in South Africa. Using the agar plate method, Alternaria alternata was isolated from coriander seed lots together with four other fungal genera, which included Aspergillus, Fusarium, Penicillium and Rhizopus. Standard seed germination tests of coriander seed lots infected with seed-borne mycoflora showed a positive correlation with the number of diseased seedlings (r?=?0.239, p?<?0.01). Pathogenicity tests demonstrated that this seed-borne A. alternata was pathogenic on coriander and symptoms on leaves first appeared as small, dark brown to black, circular lesions (<5 mm diam.) that enlarged and coalesced to form dark brown blotches as time progressed. Leaf spot disease was most severe (64%) on wounded leaves inoculated with A. alternata. Re-isolation of A. alternata from diseased coriander plants satisfied the Koch’s postulates, thus confirming it as the causal agent of Alternaria leaf spot disease. Parsimony analysis based on rpb2 (GenBank Accession No. KT895947), gapdh (KT895949) and tef-1α (KT895945) sequences confirmed identity of the Alternaria isolate, which grouped within the A. alternata clade. Alternaria alternata was shown to be transmitted from infected coriander seed to the developing plants.  相似文献   

20.
The members of the Colletotrichum gloeosporioides species complex (CGSC), the dominant pathogens of apple bitter rot in Nagano prefecture, Japan, were reidentified and the relationship between the species and fungicide sensitivity was revealed. Based on phylogenetic analysis of the ApMat locus with the neighbor-joining (NJ) method, isolates from apple contained three species of the CGSC; C. fructicola, C. aenigma, C. siamense, and three clades of the CGSC: Clade V, S and K. Colletotrichum fructicola and Clade S dominated in Nagano Prefecture. Isolates of C. siamense, C. aenigma and Clade V, S and K remained sensitive to benomyl and quinone outside inhibitor (QoI) fungicides, while C. fructicola often developed resistance to benomyl and QoI fungicides. These results suggest that the development of fungicide resistance differs among members of the CGSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号