首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soft rot and blackleg of potato caused by pectinolytic bacteria lead to severe economic losses in potato production worldwide. To investigate the species composition of bacteria causing soft rot and black leg of potato in Norway and Poland, bacteria were isolated from potato tubers and stems. Forty-one Norwegian strains and 42 Polish strains that formed cavities on pectate medium were selected for potato tuber maceration assays and sequencing of three housekeeping genes (dnaX, icdA and mdh) for species identification and phylogenetic analysis. The distribution of the species causing soft rot and blackleg in Norway and Poland differed: we have demonstrated that mainly P. atrosepticum and P. c. subsp. carotovorum are the causal agents of soft rot and blackleg of potatoes in Norway, while P. wasabiae was identified as one of the most important soft rot pathogens in Poland. In contrast to the other European countries, D. solani seem not to be a major pathogen of potato in Norway and Poland. The Norwegian and Polish P. c. subsp. carotovorum and P. wasabiae strains did not cluster with type strains of the respective species in the phylogenetic analysis, which underlines the taxonomic complexity of the genus Pectobacterium. No correlation between the country of origin and clustering of the strains was observed. All strains tested in this study were able to macerate potato tissue. The ability to macerate potato tissue was significantly greater for the P. c. subsp. carotovorum and Dickeya spp., compared to P. atrosepticum and P. wasabiae.  相似文献   

2.
Pectinolytic bacteria from the genus Dickeya (former Erwinia chrysanthemi), belonging to Dickeya dianthicola and Dickeya solani species, are causative agents of blackleg and soft rot diseases in Europe. Recently, D. solani have been isolated most frequently from potato plants with the symptoms of blackleg and soft rot. D. solani strains were shown to cause more severe disease symptoms on potato plants than D. dianthicola especially at the higher temperature. They are also able to develop blackleg disease from lower inoculum levels. In the presented study we not only compared phenotypic features of fifteen D. solani strains isolated in countries having different climatic conditions, Poland, Finland and Israel, but also we examined three D. dianthicola strains. The comparison was performed to determine the influence of the strain origin and the temperature of incubation on the ability of the strains to macerate potato tissue and on their major virulence factors such as: pectinolytic, cellulolytic and proteolytic activities, siderophore production and motility. Polish D. solani strains showed higher activities of cell wall degrading enzymes than the Finnish and Israeli strains at all the tested temperatures: 18, 27, 37 °C. This observation is correlated with the higher ability of Polish D. solani strains to cause soft rot. In addition, D. solani strains exhibited higher activity of the above mentioned enzymes and caused more severe potato tuber maceration in laboratory tests than the tested D. dianthicola strains. The collected results indicate that although D. solani strains from different climatic conditions have identical Pulse Field Gel Electrophoresis (PFGE) profiles in addition to the same fingerprint profiles obtained by the repetitive sequence-based polymerase chain reaction (REP, ERIC and BOX repetitive sequences), they differ in the examined phenotypic features, especially in the activities of pectinolytic, cellulolytic and proteolytic enzymes and their capacity to macerate potato tuber tissue.  相似文献   

3.
Bacterial pathogens of onion (Allium cepa) plants and their undetected presence in seed can cause substantial losses to onion producers. In this study, 23 Pseudomonas syringae strains were isolated from five onion plants and 18 onion seeds. The symptoms on leaves and seed stalks were irregular lesions with necrotic centres and water soaked margins. The aim of the study was to characterize these P. syringae strains using Biolog GN III carbon source utilization, multilocus sequence typing (MLST) based on partial sequences of four housekeeping genes (cts, gapA, gyrB and rpoD), and to determine whether or not the strains were pathogenic on onion (cv. Granex 33), chive (Allium schoenoprasum cv. Grasiue), leek (Allium porrum cv. Giant Italian) and spring onion (Allium fistulosum cv. Salotte) plants. Both Biolog analysis and MLST analysis separated onion strains into two clusters, one supporting the existence of a new pathovar of P. syringae, and the other corresponding to P. syringae pv. porri. Pseudomonas syringae strains belonging to the new pathovar we pathogenic only on onion plants of the Allium spp. tested. The results of this study revealed that bacterial blight of onion in South Africa is caused by two pathovars of P. syringae sensu lato, namely, the newly described pathovar, allii, and P. syringae pv. porri. The symptoms caused by these two pathovars in the field were indistinguishable.  相似文献   

4.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

5.
Forty-one representative Japanese Dickeya spp. (Erwinia chrysanthemi) strains isolated from 24 plants in Japan were investigated using multilocus sequence analysis of recA, dnaX, rpoD, gyrB and 16S rDNA; PCR–RFLP (restriction fragment length polymorphism) of recA, rpoD and gyrB genes; PCR genomic fingerprinting; and biochemical tests. Based on the recA, dnaX, rpoD, gyrB and 16S rDNA sequences and PCR genomic fingerprinting, the strains were essentially divided into six groups (I–VI). Group I corresponded to D. chrysanthemi, group II corresponded to D. dadantii, group III to D. dianthicola and group IV to D. zeae. Meanwhile, group V and group VI could not be assigned to any existing Dickeya species, and they were deduced to be two putative new species. The PCR–RFLP analysis of gyrB, rpoD and recA clearly differentiated the six groups of Dickeya strains. From the results of the biochemical tests, the strains were assigned to biovars 1, 3, 5, 8 and 9; only one strain (SUPP 2525) was not assignable to the existing biovars. We also showed that the PCR–RFLP analysis of rpoD, gyrB and recA can be used as a rapid technique to identify Japanese Dickeya strains.  相似文献   

6.
Genetic variability within Septoria carvi isolates obtained from various organs of caraway cultivated in south-eastern and central Poland was studied using the RAPD-PCR technique. The tests were performed using randomly selected primers. The DNA profiles obtained using four primers proved useful in determining genetic variability among the genotypes of Septoria carvi isolates. The present study characterized the differences in the nucleotide sequence within the internal transcribed spacer region of rDNA (ITS1, 5.8S, ITS2) of selected S. carvi isolates and reference strains of Septoria spp. Moreover, eight isolates were sequenced for three loci: actin, calmodulin and translation elongation factor 1-alpha, and the obtained sequences were compared with the sequences of Septoria reference strains affecting other plants of the family Apiaceae. Phylogenetic analysis showed distinct differences of the tested isolates, which allowed to treat them Septoria carvi species affecting the above-ground organs of caraway Carum carvi L. This study is the first report on the genetic characteristics of the species S. carvi.  相似文献   

7.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

8.
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity in the southern United States. The main form of pathogen control is the use of stem canker resistant soybean varieties. In this study, strains of Diaporthe and Phomopsis were isolated from stem and seeds of soybean in different locations in South America during the years 1989–2014. Genomic DNA from 26 isolates were analyzed by PCR-restriction fragment length polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP) techniques, and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA. The molecular analysis of ITS sequences by alignment with those of ex-type strains deposited in GenBank and morphological characteristics allowed the identification of Phomopsis longicolla, D. phaseolorum var. sojae, D. caulivora and D. aspalathi. An analysis of the pathogenicity of 13 isolates of D. aspalathi inoculated in soybean genotypes carrying different resistance genes to stem canker (Rdm1, Rdm2, Rdm3, Rdm4, Rdm5 and Rdm?) enabled us to identify the occurrence of at least three races of D. aspalathi occurring in Brazil. Among the isolates identified as D. aspalathi, both molecular and phenotypic analyses showed clustering depending on the date of collection and pathogenicity, which revealed the existence of variability of the pathogen.  相似文献   

9.
Bacterial canker is one of the most important diseases of stone fruit trees in various locations of Kurdistan province, Iran. Genetic diversity and evolutionary relationships among 20 fluorescent pseudomonads isolated from stone fruit trees with symptoms similar to bacterial canker were investigated using a polyphasic approach by means of phenotypic characterizations, repetitive PCR using the REP and ERIC primers and multilocus sequence typing (MLST) of four housekeeping genes (gapA, rpoD, gyrB and gltA). The pathogenicity of strains was carried out under greenhouse conditions. Twelve strains produced an expected amplified DNA fragment of about 752-bp which indicated the presence of the syrB gene. Based on MLST, these strains belonged to P. syringae species complex and included in the genomospecies 1, phylogroup 2b and 2d. Phylogenetic analysis of the other eight fluorescent pseudomonad strains by using gyrB and rpoD sequences allowed the identification of strains into P. fluorescens, P. putida and P. lutea groups. Unweighted pair group method analysis (UPGMA) of genomic fingerprints obtained by rep-PCR revealed 17 different patterns which grouped P. syringae strains into three clusters clearly separated from other fluorescent pseudomonads. MLST confirmed the genetic variability among strains obtained by rep-PCR. Grouping identified of P. syringae strains by both rep-PCR and MLST was related to geographic locations of strains.  相似文献   

10.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

11.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

12.
The aim of this study was to identify the Colletotrichum species associated with anthracnose symptoms in coffee (Coffea arabica L.) plantations in northern Puebla, Mexico. In 2013, five surveys were conducted in different production areas and at different altitudes. Symptomatic leaves, shoots, and ripe and unripe fruits of the coffee variety Red Caturra were collected. Isolates were obtained and the Colletotrichum species were identified morphologically and characterized by multilocus sequence analyses of the ACT, CAL, GAPDH, and TUB2 genes and the rDNA region. Additionally, pathogenicity tests were conducted using six isolates. We identified C. gigasporum, C. gloeosporioides, C. karstii (two isolates), C. siamense, and C. theobromicola. This is the first report of these five species infecting leaves of coffee. The symptoms caused by these species were characterized, but the species causing Coffee Berry Disease was not found. This is the first report of a complex of species affecting coffee plants in the same geographical area in Mexico, and suggests that other complexes of species may be important pathogens in coffee-producing areas elsewhere.  相似文献   

13.
Pectinolytic bacteria were isolated from 48 potato plants showing the symptoms of blackleg and collected in different fields of commercial potato production areas at Samsun, Amasya, Corum and Yozgat provinces in Turkey in 2015. The survey resulted in the isolation of 26 pectinolytic strains that belonged to P. atrosepticum, P. carotovorum subsp. brasiliense, P. carotovorum subsp. carotovorum and P. parmentieri species based on molecular identification with species-specific PCR and phenotypic characterization. The identified strains indicated typical biochemical characteristics of the assigned species. For 16 representative Pectobacterium isolates 10 unique rep-PCR band patterns were obtained. The 16S rRNA and recA and gapA gene fragment sequencing confirmed the species identity of the isolates. The phenotypic characterization of the strains revealed that for all assays but one (cellulase, protease activity, swimming but not swarming), the tested Pectobacterium species were significantly different from each other proving the diversity of the strains belonging to these genera. Recent outbreaks of blackleg and/or soft rot in potato production areas in Turkey may pose a threat on other crops, as tomato, pepper, cucumber, onion, cabbage, broccoli and sugar beet are cultivated in the same provinces.  相似文献   

14.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

15.
Monilinia fructicola, the most destructive pathogen of the genus Monilinia, has recently been introduced into Serbia and many other European countries. Since then, many studies have been conducted to evaluate the characteristics of Monilinia species that have a role in the establishment and survival of the pathogen in new areas. The present study assessed the capacity of M. fructicola to repress and replace Monilinia laxa in Serbia based on: fungicide sensitivity, growth rate and aggressiveness at different temperatures, as well as frost hardiness of the isolates of both species. The results showed that the isolates of M. fructicola, compared to M. laxa, were significantly less sensitive to the following fungicides: iprodione, tebucanozole, chlorothalonil, azoxystrobin, fluopyram, and boscalid. In addition, M. laxa isolates exhibited little variation in sensitivity to all of the tested fungicides, whereas M. fructicola isolates displayed a wide range of sensitivity. The temperature of 5°C favored M. laxa growth and aggressiveness, while at 30°C M. fructicola grew faster and had higher lesion expansion rate. These results support an assumption that M. fructicola will continue to spread in Serbian orchards in coming years, particularly on stone fruits harvested during hot summer weather.  相似文献   

16.
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is one of the most devastating disease of Brassica species worldwide. To date, a total of 20 race-specific blackleg resistance (R) genes have been reported and all of those loci are located in either the A or B genomes of various Brassica species. The B. oleracea genome (CC) shares a high ancestral synteny with the A genome of B. rapa, suggesting the presence of qualitative (race specific) resistance to blackleg disease is also possible in B. oleracea germplasm. In the present study the C genome of Korean B. oleracea germplasm was screened for the presence of blackleg R genes. Thirty-two inbred cabbage lines with unknown resistance profiles, along with five control B. napus lines with well-characterised race-specific R genes, were assessed for cotyledon resistance against two L. maculans isolates with known and highly-contrasting avirulence gene (Avr) profiles. Two cabbage accessions were identified which produced a strong resistance when challenged with either isolate, demonstrating the presence of effective blackleg R genes in the cabbage C genome. Additionally, 16 microsatellite markers linked to seven different R genes of the B. napus A genome were converted into markers for their homologous regions on the B. oleracea C genome. These markers were used to screen all B. oleracea lines to assess if the novel C genome R genes were syntenous to known R gene-homologous regions of the A genome. The resistant cabbage lines offer C genome R genes for the protection of B. oleracea varieties against incursion of blackleg disease, as well as novel additional resistance sources for introgression into B. napus and B. carinata breeding material.  相似文献   

17.
Anthracnose fruit rot caused by Colletotrichum spp. is a serious post-harvest disease of chili fruits (Capsicum spp.). One hundred-thirty isolates of Colletotrichum spp. were isolated from anthracnose of green and red cayenne pepper (Capsicum annuum) and bird’s eye chili (Capsicum frutescens). The isolates were morphologically identified as Colletotrichum acutatum sensu lato (62 isolates), Colletotrichum truncatum (54 isolates), and Colletotrichum gloeosporioides sensu lato (14 isolates). Molecular identification and phylogenetic analyses were based on internal transcribed spacer regions, β-tubulin, actin, and glyceraldehyde-3-phosphate dehydrogenase genes, and the isolates were re-identified as C. scovillei (58 isolates), C. truncatum (54 isolates), C. siamense (11 isolates), C. fioriniae (four isolates), and C. fructicola (3 isolates). Maximum likelihood trees using combined sequences showed that isolates of the same species grouped in the same main clade with the isolates used for comparison. Pathogenicity testing showed that the tested isolates from each species were pathogenic towards green and red Capsicum annuum and Capsicum frutescens upon treatment of wounded fruit, using both the mycelial plug and conidial suspension methods. Only five isolates of C. truncatum and seven isolates of C. scovillei were found to be pathogenic upon treatment of unwounded fruit. The occurrence of five Colletotrichum spp. (C. siamense, C. fructicola, C. scovillei, C. fioriniae, and C. truncatum) associated with chili anthracnose in Peninsular Malaysia indicates that correct species identification is important to formulate not only effective disease management, but also effective quarantine policy.  相似文献   

18.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

19.
Bradyrhizobium sp., a slow-growing nitrogen-fixing symbiotic bacterium of legumes and common root endophyte of other plants, is closely related to Candidatus Liberibacter asiaticus (Las), the uncultured putative pathogen associated with citrus huanglongbing (HLB). In attempts to isolate Las on a low-nutrient medium that had been used for the isolation of several uncultured bacteria of the alpha subclass of proteobacteria, slow-growing Bradyrhizobium spp. were isolated and identified by sequencing of 16S rDNA. The individual isolates tested weakly positive (Ct = 31.2–36.0) with the USDA primers commonly used in qPCR assays for Las in foliar tissues. Direct DNA extracts from roots of HLB symptomatic trees that contained sequences of Bradyrhizobium sp. had Ct values ranging from 31.2 to 36.5; sequences of Las were not present in those samples. Potential cross-reaction between DNA of members of the Rhizobiales and sequences amplified by the Las primers were tested in silico with the Primer-BLAST tool in NCBI. Similar to Las, Bradyrhizobium generated predicted 16S rDNA amplicon sizes of 78–79 bp with the qPCR primers and of 1167-1172 bp with the conventional PCR primers. Bradyrhizobium sequences of 16S rDNA had 1–7 mismatches and only 1 mismatch at the 3′ end of qPCR and conventional PCR primers confirming potential cross-reactivity. As Bradyrhizobium is usually not found in foliage, the USDA qPCR primers can be safely used to check leaves for the presence of Las, but a threshold value of 31.0 is recommended for Las detection in roots. Other primers should be tested for potential cross-reaction with members of the Rhizobiales.  相似文献   

20.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号