首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

2.
The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 g g–1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 g g–1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 g g–1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 g g–1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.  相似文献   

3.
The activity of the enzyme Na+,K+-ATPase and morphological changes of gill chloride cells in grouper, Epinephelus coioides larvae and juveniles were determined 6–48 h after abrupt transfer from ambient rearing conditions (30–32 ppt, 26.5–30 °C) to different salinity (8, 18, 32, 40 ppt) and temperature (25, 30 °C) combinations. Na+,K+-ATPase activity in day 20 larvae did not change at salinities 8–32 ppt. Activity decreased significantly (P <0.01) after exposure to 40 ppt at 25–30 °C, which was accompanied by an increase (P <0.05) in density and fractional area of chloride cells. Enzyme activity in 40 ppt did not reach a stable level and larvae failed to recover from an osmotic imbalance that produced a low survival at 25 °C and death of all larvae at 30 °C. Enzyme activity and chloride cell morphology in day 40 groupers did not change in 8–40 ppt at 25 °C and 8–32 ppt at 30 °C. A significant decrease and a subsequent increase in Na+,K+-ATPase activity in 40 ppt at 30 °C was associated with the increase in chloride cell density resulting in an increased fractional area but a decreased cell size. Enzyme activity and chloride cells of day 60 grouper were unaffected by abrupt transfer to test salinities and temperatures. These results demonstrate that grouper larvae and juveniles are efficient osmoregulators over a wide range of salinities. Salinity adaptation showed an ontogenetic shift as the larvae grew and reached the juvenile stage. This development of tolerance limits may reflect their response to actual conditions existing in the natural environment.  相似文献   

4.
Changes in immunoreactivity of Na+/K+-ATPase -subunit in gill sections of wild masu salmon (Oncorhynchus masou) during the parr-smolt transformation (smoltification) were compared with changes in gill Na+/K+-ATPase specific activity. Gill Na+/K+-ATPase specific activity increased from April and peaked in May. Immunohistochemical analysis, using an antiserum against a synthetic oligopeptide based on the conserved region of the Na+/K+-ATPase -subunit, revealed that immunoreactivity was confined to chloride cells in the surface layer of primary lamellae and the proximal end of secondary lamellae. The size and number of these cells increased gradually from February to May; however, the number of chloride cells of the secondary lamellae decreased in May. These data suggest that the synthesis of Na+/K+-ATPase and the proliferation of chloride cells occur prior to the elevation of enzyme activity. Moreover, it is likely the proliferation and hypertrophy of chloride cells on primary lamellae prepare smolts for entry into seawater and migration in the ocean.  相似文献   

5.
Atlantic salmon (Salmo salar) exposed to either simulated natural photoperiod (SNP) or continuous light (L24) were used to examine developmental changes in the presence and absence, respectively, of the parrsmolt transformation. Plasma osmolarity and ion concentrations were unaffected by photoperiod treatment. Gill Na+, K+-ATPase specific activity increased 150% between February and June in SNP fish and was low and unchanged in L24 fish. Kidney Na+, K+-ATPase specific activity varied within similar, narrow limits in both groups. Citrate synthase of liver, gill and kidney, expressed as specific activity or activity/g total body weight (relative activity), increased 25–60% between March and June in SNP fish. With the exception of kidney relative activity, citrate synthase activity declined to initial (March) levels by August. Liver, gill and kidney cytochrome c oxidase activity of the SNP group underwent similar though less marked changes. Liver, gill and kidney citrate synthase and cytochrome c oxidase activities of the L24 group remained relatively constant between March and August, and where significant differences occurred, they were lower than those of the SNP group. These results indicate that respiratory capacities of the liver, gill and kidney increase in smolls concurrent with preparatory osmoregulatory changes, and subsequently decline. The findings are consistent with a hypothesized transient increase in catabolic activity during the parr-smolt transformation that may be due to the metabolic demands of differentiation.  相似文献   

6.
There is increasing evidence for complex dosage effects on gene expression, enzyme activity and phenotype resulting from induced ploidy change. In this study, ocean-type chinook salmon were bred using a 2 × 2 factorial mating design to create four families and test whether triploidization resulted in changes in growth performance and smolting. Eggs were pressure shocked after fertilization to create triploid fish from a subset of each family. In June, fish were sampled for size, plasma insulin-like growth factor 1 (IGF-1), gill Na+–K+-ATPase activity, and expression of two Na+–K+-ATPase α subunits in the gill. Diploids were significantly heavier than triploids, and there were significant differences due to family. Despite a significant positive correlation between plasma IGF-1 and fish size, plasma IGF-1 did not differ between diploid and triploid smolts. Diploids also had significantly greater gill Na+–K+-ATPase enzyme activities than triploids and there was a strong family effect. Gill Na+–K+-ATPase α1b isoform expression differed significantly by family, but not ploidy, and generally families with lower Na+–K+-ATPase enzyme activity had higher α1b isoform gene expression. Na+–K+-ATPase α1a isoform expression did not differ among any of the groups. Although diploids were larger and had higher specific activities of Na+–K+-ATPase in the gills, there was no difference in gene expression or circulating hormone levels. The strong family effect, however, suggests that strain selection may be useful in improving performance of triploids for aquaculture.  相似文献   

7.
为研究盐度对珍珠龙胆石斑鱼()渗透调节与耗氧率的影响,设计实验一,将(162.5±12.1)g珍珠龙胆石斑鱼置于不同盐度(6、12、18、24、30)下养殖10 d,测定血清渗透压及Na+、Cl-、K+离子浓度。实验结果表明,随盐度的升高血清渗透压及Na+、Cl-、K+离子浓度也随着升高,各组[Na+]:[Cl-]比值无显著差异(>0.05);经回归分析得到血清等渗点渗透压为365.95 mOsm/kg,所对应盐度为12.75。实验二,将(26.4±2.7)g幼鱼置于不同盐度(6、12、18、24、30)下养殖30 d,测定在开始暴露后0 h、3 h、24 h、72 h鳃Na+/K+-ATPase活性及表达和第30天耗氧率,结果表明鳃Na+/K+-ATPase活性随盐度的增大呈“U”形变化;鳃Na+/K+-ATPase α1基因表达量波动较大,在72 h后随盐度增大先降低后增加,变化趋势与酶活性一致;第30天耗氧率随盐度的增加先降低后增加又降低。综上所述,珍珠龙胆石斑鱼幼鱼10 d内能够完全适应6~30盐度急性变化,耗氧率除了受离子渗透调节的影响,还可能与其生活史阶段有关。  相似文献   

8.
盐度胁迫对三疣梭子蟹鳃Na+/K+-ATPase酶活的影响   总被引:2,自引:2,他引:0  
江山  许强华 《水产学报》2011,35(10):1475-1480
通过钼蓝法测定三疣梭子蟹在3组实验盐度的胁迫过程中第2对和第6对鳃Na+/K+-ATPase酶活的变化,比较了3组实验盐度胁迫1 d时,鳃Na+/K+-ATPase的酶活大小。结果表明,在盐度胁迫初期,3组实验盐度下第2对和第6对鳃Na+/K+-ATPase的酶活下降;之后,各组实验盐度下第2对和第6对鳃Na+/K+-ATPase的酶活开始随胁迫时间增长而上升;最后,各组实验盐度下第2和第6对鳃Na+/K+-ATPase的酶活下降并趋于稳定。另外,胁迫1 d时,各组实验盐度下三疣梭子蟹前5对鳃Na+/K+-ATPase的酶活显著低于后3对鳃Na+/K+-ATPase的酶活。三疣梭子蟹对盐度变化的调节可分为被动应激期(酶活力下降)、主动调节期(酶活力逐渐上升)和适应期(酶活力稳定);三疣梭子蟹后3对鳃是离子转运、渗透压调节的主要部位。  相似文献   

9.
With the aim of comparing the effects of oral T3 and NaCl administration on trout hypoosmoregulatory mechanisms, three groups of rainbow trout (Oncorhynchus mykiss Walbaum) held in freshwater (FW) were fed a basal diet (C), the same diet containing 8.83 ppm of 3,5,3-triiodo-L-thyronine (T3) (T) or 10% (w/w) NaCl (N) respectively for 30 d. They were then transferred to brackish water (BW) for 22 d and fed on diet C. Gill (Na++K+)-ATPase activity and its dependence on ATP, Na+ and pH, number of gill chloride cells (CC), serum T3 level as well as fish growth, condition factor (K) and mortality were evaluated. During the FW phase, as compared to C trout, T trout showed a two fold higher serum T3 level, had unchanged gill (Na++K+)-ATPase activity and increased CC number, whereas N trout showed higher gill (Na++K+)-ATPase activity and CC number. At the end of the experiment the enzyme activity was in the order T>N>C groups and all groups showed similar CC number. Both treatments changed the enzyme activation kinetics by ATP and Na+. A transient increase in K value occurred in N group during the period of salt administration. In BW, T and N groups had higher and lower survival than C group respectively. Other parameters were unaffected by the treatments. This trial suggests that T3 administration promotes the development of hypoosmoregulatory mechanisms of trout but it leaves the (Na++K+)-ATPase activity unaltered till the transfer to a hyperosmotic environment.  相似文献   

10.
The growth-independent effect of ovine growth hormone (oGH) and oGH + cortisol treatment on seawater (SW) adaptation in immature rainbow trout, Salmo gairdneri was investigated. Fish were injected every second day with saline, 2.0 μg oGH/g or 2.0 μg oGH + 8.0 μg cortisol/g for a maximum of 8 injections in freshwater (FW). Subgroups were transferred to 28‰ SW after 4 or 8 injections, and changes in plasma Na+ and Cl, muscle water content and gill Na+/K+-ATPase activity were measured. In both of the hormone-treated groups retained in FW, gill Na+/K+-ATPase activity and interlamellar chloride cell density increased. The effects were most pronounced in the oGH + cortisol group after 2 weeks of treatment. After transfer to SW most of the control fish died due to the osmotic stress, whereas in the hormone-treated groups, mortality was low and there was a positive correlation between pretransfer gill Na+/K+-ATPase and the ability to maintain ionic-osmotic homeostasis after SW transfer. After two weeks of oGH + cortisol treatment, gill Na+/K+-ATPase activity was maximal. In contrast, after SW transfer, Na+/K+-ATPase activity increased further in the oGH-treated group. This group regulated ionic-osmotic parameters less effectively than the oGH + cortisol-treated group. The data indicate that GH and cortisol are important hormones in the regulation of hypoosmoregulatory mechanisms in S. gairdneri.  相似文献   

11.
The response to cold of gill and kidney membrane lipid composition and microsomal (Na++K+)-ATPase, Na+-ATPase and Mg2+-ATPase activities in reared sea bass (Dicentrarchus labrax L.) was investigated. Fish acclimation was carried out according to the seasonal cycle from August to March. No cold-promoted increase in fatty acid unsaturation was shown in gill and kidney polar lipids and in total lipids of mitochondria and microsomes. In both tissues the (Na++K+)-ATPase exhibited positive compensation for cold acclimation whereas the Na+-ATPase displayed negative compensation. The Mg2+-ATPase showed no compensation in the gills and positive compensation in the kidneys. During cold acclimation the break in the Arrhenius plot of the (Na++K+)-ATPase decreased, whereas breaks of both the Na+-ATPase and the Mg2+-ATPase activities remained unchanged. The results indicate that the sea bass does not adopt membrane unsaturation as a cold-facing strategy. The cold-promoted enhancement of (Na++K+)-ATPase activity in osmoregulatory tissues may be advantageous to maintain efficient osmoregulation under thermodynamically unfavourable conditions.  相似文献   

12.
The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (Acipenser sinensis Gray) (128.8 ± 15 g) transferred directly from fresh water (0‰, 46 mOsmol kg−1) to brackish water (10‰, 273 mOsmol kg−1) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl), sodium (Na+), potassium (K+) and calcium (Ca2+) ion concentrations, as well as gill and spiral valve Na+,K+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na+, Cl and Ca2+) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (P < 0.05) than the BW group. Gill Na+,K+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned to a new steady state at 216 h. The differences between gill Na+,K+-ATPase activity of BW and FW fish were significant (P < 0.05) after 12 h. In contrast, Na+,K+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216 h after exposure to BW, Na+,K+-ATPase activities of the spiral valve increased slowly to the levels of FW control. The results of our study indicate the existence of hyposmoregulatory adaptive mechanisms in 7-month-old juvenile Chinese sturgeon which enable this fish to acclimate itself successfully to brackish water.  相似文献   

13.
The physiological responses of Senegalese sole to a sudden salinity change were investigated. The fish were first acclimated to an initial salinity of 37.5?ppt for 4?h. Then, one group was subjected to increased salinity (55?ppt) while another group was subjected to decreased salinity (5?ppt). The third group (control group) remained at 37.5?ppt. We measured the oxygen consumption rate, osmoregulatory (plasma osmolality, gill and kidney Na+,K+-ATPase activities) and stress (plasma cortisol and metabolites) parameters 0.5 and 3?h after transfer. Oxygen consumption at both salinities was higher than for the control at both sampling times. Gill Na+,K+-ATPase activity was significantly higher for the 55?ppt salinity at 0.5?h. Plasma osmolality decreased in the fish exposed to 5?ppt at the two sampling times but no changes were detected for high salinities. Plasma cortisol levels significantly increased at both salinities, although these values declined in the low-salinity group 3?h after transfer. Plasma glucose at 5?ppt salinity did not vary significantly at 0.5?h but decreased at 3?h, while lactate increased for both treatments at the first sampling time and returned to the control levels at 3?h. Overall, the physiological response of S. senegalensis was immediate and involved a rise in oxygen consumption and plasma cortisol values as well as greater metabolite mobilization at both salinities.  相似文献   

14.
The effects of the Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae were investigated. The results indicate that the Na+-K+-ATPase activity, survival rate and weight gain of postlarvae were significantly affected by the Na+/K+ and Mg2+/Ca2+ ratios (P < 0.05). The Na+-K+-ATPase activity of postlarvae, in every treatment, changed corresponding to Na+/K+ and Mg2+/Ca2+ ratios, and came to a stable level after 24 h. There was a negative relation between Na+-K+-ATPase activity and Na+/K+ ratio, while there was a positive relation between Na+-K+-ATPase activity and Mg2+/Ca2+ ratio. Compared with seawater (the Na+/K+ and Mg2+/Ca2+ ratios are 27.8 and 4.64 respectively), the Na+-K+-ATPase activity of the Na+/K+ ratio 30 treatment showed no significant difference, while the Mg2+/Ca2+ ratio 4.5 treatment showed distinct difference. The survival rates and weight gain of postlarvae increased markedly when the suitable amount of K+ and Ca2+ was added to test water, and arrived at their maximum in the Na+/K+ ratio 20-30 or Mg2+/Ca2+ ratio 4.5 treatment, having no significant difference compared with normal seawater. Therefore, considering the Na+/K+, Mg2+/Ca2+ ratios and the absolute concentration of Mg2+, Ca2+ in the experimental saline groundwaters applied to Marsupenaeus japonicus farming, it should be modulated to around 30, 4.5 and 1312 mg/l, 291 mg/l, respectively.  相似文献   

15.
Gill and liver microsomal Na+/K+-adenosine triphosphatase (ATPase) activities, body weight, and several blood parameters were measured in marble gobies held in freshwater, in air on wet filter paper for 7 days and three days after return to freshwater following 7 days in air. During the 7 days in air, body weight, and blood Na+ and K+ concentrations remained unchanged. During the same period, however, mean specific activity of the gill ATPase fell 79% while liver ATPase specific activity was unchanged. When these fish were returned to water the specific activity of the gill ATPase returned to values seen in freshwater gobies within 3 days. Several changes were also noted in the characteristics of the ATPase in the fish held in air.  相似文献   

16.
Sexually immature two-year old Arctic char (Salvelinus alpinus) were implanted with Silastic capsules containing testosterone or 11-ketoandrostenedione in early spring. Seawater adaptability of the hormone-treated and sham-operated fish was tested periodically from May to August using a 48h seawater challenge test with 25‰ seawater. The sham-operated control fish displayed a seasonal pattern in seawater adaptation, showing a good hypoosmoregulatory ability until mid June followed by a marked increase in plasma sodium and magnesium levels in July and August. Gill Na+-K+-ATPase activity decreased concurrently with the observed decrease in seawater adaptability. Over the same period the androgen-treated fish displayed a similar pattern in seawater adaptability, however, in May and June the plasma sodium levels were significantly higher in both androgen-treated groups compared to the control group. Plasma magnesium regulation was impaired in both androgen-treated groups in August. Gill Na+-K+-ATPase activity in the testosterone-treated fish was lower in June compared to the control fish, whereas the activity was not affected by 11-ketoandrostenedione treatment. The results show that while androgens impair the hypoosmoregulatory capacity in Arctic char, the seasonal pattern of seawater adaptability is not affected.  相似文献   

17.
18.
The aim of this work was to determine the effects of supplemental dietary sodium chloride on salt water acclimation of tilapia Oreochromis niloticus. Fish were fed a basal diet supplemented with NaCl (8%) during three weeks in fresh water (FW) and then transferred to salt water (SW) at 15 and 20. Changes in plasma osmolality, chloride ion concentration (Cl), plasma level of cortisol and gill Na+, K+-ATPase activity were measured at 6, 12, 24, 48, 72 and 168 h after transfer to 15SW, while the higher strength SW group (20) was only monitored up to 24 h. Morphological changes in the gill mitochondria-rich (MR) cells were examined in relation to environmental salinity. The changes associated with dietary NaCl were sporadic and of small magnitude. The plasma osmolality and Cl increased immediately after transfer up to 12–24 h, but fish fed dietary salt (S) showed lower values than the control group (C). The S group showed higher plasma levels of cortisol than the control, which maintained its initial levels during the experiment. Gill Na+, K+-ATPase activity of the S group began to increase in the first hours after transfer, reaching maximum at 12 h and returned to basal level at 24 h, while the control group maintained basal levels. The differences between gill Na+, K+-ATPase activity of S and C fish were significant (p < 0.05) at 12 h. Transmission electron microscopy (TEM) revealed that MR cells in SW show more mitochondria and a more developed tubular system arising from the basolateral membrane. The MR cells of both groups frequently formed a multicellular complex in SW, consisting of a main MR and one or more accessory cells. Such complexes are rarely observed in FW. Some MR cells of fish fed supplemented dietary salt displayed convex apical membrane in FW.  相似文献   

19.
An increase in salinity of freshwater can affect the physiology and metal uptake in fish. In the present study, Nile tilapia Oreochromis niloticus were exposed to copper (1.0 mg/l) in increased salinities (2, 4, and 8 ppt) for 0, 1, 3, 7, and 14 days. Following the exposures, the activities of Na+/K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase were measured in the gill, kidney, and intestine to evaluate the changes in osmoregulation of fish. Results showed that increases in salinity and Cu exposure of fish significantly altered the ATPase activities depending on the tissue type, salinity increase, and exposure durations. Salinity-alone exposures increased Na+/K+-ATPase activity and decreased Ca2+-ATPase activity. Na+/K+-ATPase activity decreased following Cu exposure in 2 and 4 ppt salinities, though the activity increased in 8 ppt salinity. Ca2+-ATPase activity decreased in the gill and intestine in all salinities, while the activity mostly increased in the kidney. However, there were great variations in Mg2+-ATPase activity following exposure to salinity alone and salinity+Cu combination. Cu accumulated in the gill and intestine following 14 days exposure and accumulation was negatively correlated with salinity increase. Data indicated that ATPases were highly sensitive to increases in salinity and Cu and might be a useful biomarker in ecotoxicological studies. However, data from salinity increased freshwaters should carefully be handled to see a clear picture on the effects of metals, as salinity affects both metal speciation and fish osmoregulation.  相似文献   

20.
Whole-body (but predominantly gill) Na+ exchange, gill Na+/K+/ATPase activity and seawater tolerance were examined in juvenile Atlantic salmon during the smolting period. Transepithelial net Na+ gain decreased steadily from late February showing a net loss in April and early May, returning to approximate equilibrium in mid-May. This seasonal net loss of Na+ to the environment occurred slightly after maximal gill epithelial Na+/K+/ATPase activity and preceded maximal seawater tolerance. The results are discussed in relation to changes in gill permeability and salt intake via the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号