首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
草鱼鱼鳞胶原蛋白的提取及其部分生物学性能   总被引:5,自引:2,他引:3  
以草鱼鱼鳞为原料, 分别提取鱼鳞中的酸溶性胶原蛋白(ASC)和酶溶性胶原蛋白(PSC), 着重开展了其包括热稳定性、体外酶降解性以及胶原海绵材料特性在内的相关研究, 并与哺乳动物来源的猪皮胶原(PC)相比较。实验结果表明, 制备所得的3种胶原蛋白均为典型的Ⅰ型胶原并具有完整的三螺旋结构; PC的热变性温度(41.6 ℃)明显高于ASC(34.8 ℃)和PSC(35.2 ℃); 3种胶原蛋白的体外酶降解性能受水解酶的种类、胶原蛋白提取方法、胶原蛋白来源、胶原蛋白受热历史以及蛋白的自组装程度影响。胶原蛋白酶、胰蛋白酶和木瓜蛋白酶对淡水鱼胶原均具有不同程度的降解能力, 但胶原蛋白酶的降解能力最强; 相同条件下, 3种胶原蛋白体外酶降解率依次为ASC>PSC>PC; 经热变性处理后胶原蛋白的体外酶降解率明显提高而经体外自组装处理后其体外酶降解率均出现不同程度的降低; 3种胶原样品冻干后得到的胶原海绵材料具有不同的机械性能和组织结构, ASC和PSC海绵是一种多孔但拉伸承受力较弱的海绵材料, 而PC则与之相反。  相似文献   

2.
为研究杜仲对草鱼生长性能、肌肉品质及胶原蛋白基因COL1A1和COL1A2表达的影响,实验采用初始体质量为(215.0±0.4)g的草鱼120尾,随机分为2处理组(每组3重复,每重复20尾鱼),分别饲喂基础饲料(对照组)和添加2%杜仲的实验饲料(杜仲组),养殖时间为8周。结果显示,与对照组相比,添加2%杜仲对草鱼生长性能无显著影响,但能显著增加肌肉、皮肤和肝脏胶原蛋白水平,增加肌肉总必需氨基酸(TEAA)、总氨基酸(TAA)水平。2%杜仲可显著降低草鱼肌肉的冷冻失水率、离心失水率,但对肌纤维密度和肌纤维直径无显著影响。在胶原蛋白基因表达方面,2%杜仲显著增加了第4周、8周时草鱼的肌肉、皮肤和第8周时的肝脏组织COL1A1、COL1A2基因m RNA表达量。研究表明,饲料中添加2%杜仲可改善大规格草鱼的肌肉品质。  相似文献   

3.
To investigate the effects of supplemental nutrient additives in broad bean-based diets on growth, flesh quality, and collagen gene expression of grass carp, five diets were prepared, including complete formula diet (control), soaked broad bean (SBB), and three broad bean-based diets containing 80% broad bean without (BBD1) or with the supplementation of methionine (BBD2), and methionine+vitamins+minerals (BBD3), and were fed to grass carp (171.9 ± 1.1 g), Ctenopharyngodon idellus, for 84 days. The results showed that broad bean-based diets significantly increased weight gain (WG) and reduced the feed conversion ratio (FCR) of grass carp when compared to the SBB (p < .05). The BBD3 group reached levels similar to the WG and FCR of the control group (p > .05). Grass carp fed the BBD3 diet had lower steaming loss of flesh, higher muscle fiber density, and higher collagen content in muscle and skin than the control (p < .05). The relative expressions of COL1A1 and COL1A2 mRNA in muscle and skin were significantly higher in the BBD3 and SBB groups than in other groups (p < .05). In conclusion, the combination of methionine, vitamins, and minerals in broad bean-based diets promoted the growth of “crisped” grass carp and improved flesh quality and collagen gene expression when compared to the control formula diet.  相似文献   

4.
A feeding trial was conducted for 8 weeks to evaluate the effects of graded levels of neutral phytase supplementation using pretreatment or spraying method on growth performance, body composition, bone mineral content and serum biochemical parameter in grass carp, Ctenopharyngodon idellus. A control diet without phytase was added and six additional diets were arranged as a 2 × 3 factorial with two methods (pretreatment or spraying) and three levels of phytase (500, 1000 or 1500 U kg?1). The results showed that supplemental phytase at different levels in the diet and with different application methods all improved weight gain, specific growth rate and protein efficiency ratio of grass carp (P < 0.05). The feed conversion ratio in phytase‐supplemented groups was lower than the control. Dietary phytase addition reduced the lipid content in the whole body of grass carp. Phytase supplementation with different method increased ash and mineral (P, Ca, Mg and Zn) contents in whole‐body and vertebra (P < 0.05). The increase in these mineral contents was also observed in the serum. Based on the results, we may conclude that: 1) supplemental dietary phytase, regardless of the application methodology, improved the growth performance and nutrient utilization in grass carp; 2) the pretreatment mode of phytase application was more effective than spraying at the same phytase level.  相似文献   

5.
6.
Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to regulate the appetite. This study aimed to evaluate the effects of dietary GABA, as a feed additive, on growth performance and antioxidant status of juvenile grass carp. Five isonitrogenous and isoenergetic experimental diets with graded levels of GABA (0, 20, 50, 100 and 200 mg/kg) were fed to grass carp juveniles (mean weight: 2.0 g) for 8 wk. The results showed that the specific growth rate (SGR) increased significantly with dietary GABA level up to the 100 mg/kg diet, and then decreased in the 200 mg/kg group (P < 0.05). The difference in SGR value between the 50 and 100 mg/kg groups was not statistically significant (P > 0.05). The survival rate was not significantly affected by dietary GABA level (P > 0.05). No significant difference was observed in the whole body composition among treatments (P > 0.05). The hepatopancreatic glutathione peroxidase (GPx) activity increased significantly (P < 0.05) with the GABA level, peaked in the group with GABA 100 mg/kg, and then decreased. The hepatopancreatic superoxide dismutase and total antioxidant capacity activities showed the same trend as GPx. Inversely, the hepatopancreatic malondialdehyde content decreased first and then increased with the dietary GABA level (P < 0.05). No significant differences were observed in the gene expression of neuropeptide Y (NPY), cholecystokinin, leptin, and ghrelin in the hepatopancreas among groups. However, the NPY and ghrelin mRNA expression levels in the brain increased significantly with the GABA level, peaked in the groups of 50 mg/kg, and then showed a decreasing trend. On the basis of quadratic regression analysis of SGR, the optimum content of dietary GABA in juvenile grass carp is suggested to be a 87.5 mg/kg diet.  相似文献   

7.
Diet is known to influence intestinal microbiota in fish, but the specifics of these impacts are still poorly understood. Different protein/fibre ratio diets may result in differing structures and activities of gut microbiota. We examined the hindgut microbiome of grass carp (Ctenopharyngodon idellus) fed three different diets: fish meal (FM, high protein – low fibre), Sudan grass (SG, high fibre – low protein) and compound feed (CF, intermediate). Microbial profiles of fish fed on FM were significantly different from profiles of fish fed CF and SG (= 18.85, < .01). Cetobacterium, known to be positively associated with protein digestion, was the dominant microbial group in FM samples (approximately 75.7%), while Lachnospiraceae and Erysipelotrichaceae, thought to be involved in fermentation of plant polysaccharides, were dominant in CF and SG samples (46.8% and 42.9% respectively). Network analyses indicated that the abundance of Lachnospiraceae and Erysipelotrichaceae was in a significantly positive correlation (= .895, = .001). Short‐chain fatty acid (SCFA) levels may indicate that the digestibility of diet by microbiota in the grass carp gut decreased from FM to SG (FM>CF>SG). Overall low SCFA levels indicate that hindgut fermentation probably provides a low proportion of energy requirements in grass carp.  相似文献   

8.
Six practical extruded diets were formulated to investigate the effect of graded levels of starch (17, 22, and 26%) associated with either 30 or 34% protein level on growth, feed utilization, body composition, and hepatic transaminases of juvenile grass carp, Ctenopharyngodon idella. Over an 8‐wk growth trial, survival rates (99–100%) were not significantly affected (P > 0.05) by dietary treatments. Independent of dietary starch level, weight gain (WG, %), specific growth rate (SGR, %/d), and feed efficiency ratio (FER) showed significant better response (P < 0.05) of fish fed 34% protein diet than those of fish fed 30% protein diet. Protein productive value (PPV) was only affected by dietary protein level, with higher values in the 34% protein level than their 30% counterparts. Irrespective of dietary protein level, lipid productive value (LPV), energy productive value (EPV), viscerosomatic index (VSI, %), intraperitoneal fat ratio (IPF, %), and whole body, liver, and muscle lipid level increased with increasing starch supply. At the same protein level, plasma triacylglycerol (TG), cholesterol (CHO), and low density lipoprotein‐cholesterol (LDL‐C) increased when dietary starch level increased from 17 to 26%. Neither dietary protein level nor starch level affected activities of hepatic alanine aminotransferase (ALAT) and aspartate transferase (ASAT). The overall results in this study suggested that the higher 34% protein was superior for juvenile grass carp and an increase in dietary starch level did not improve growth or protein utilization but enhanced whole‐body lipid deposition and liver, viscera and muscle lipid level. The diet containing 34% protein and 17% starch was optimal for practical production of juvenile grass carp.  相似文献   

9.
草鱼体组成的数学描述   总被引:1,自引:1,他引:0  
陈拥军  邹滔  林仕梅  罗莉  李云 《水产学报》2016,40(4):566-576
为了对草鱼体组成进行定量描述,本研究从中外文数据库收集并采纳了51个草鱼营养生理相关研究的数据,数据点约3700个,草鱼体质量为1.52~694.80 g。通过数据整理、相关性分析和线性回归分析,结果显示,草鱼蛋白质含量和内脏重(y,g)与体质量(x,g)间的线性关系分别为y=0.1604x–0.3645,R2=0.994;y=0.1059x–0.3097,R2=0.9875。随着草鱼体质量增加,草鱼脂肪和灰分含量(尤其是脂肪含量)受饲料组成的影响逐渐增加。草鱼全鱼每沉积1 g蛋白质伴随着4.57 g水分保留,而每沉积1 g脂肪会导致水分含量减少0.95 g。草鱼肝脏每沉积1 g脂肪会导致其水分含量减少0.66 g,说明草鱼不同组织沉积脂肪导致的水分损失率不尽相同。本研究亦表明,肠系膜是草鱼脂肪沉积的重要部位,肠系膜、肝脏和肌肉脂肪的积累是全鱼脂肪含量上升的重要原因,全鱼脂肪累积伴随着内脏重的增加。本研究的执行有利于定量描述草鱼体组成规律,为草鱼的生产和销售提供指导作用。  相似文献   

10.
Two 8‐wk studies were conducted to evaluate the effects of neutral phytase supplementation on hemato‐biochemical status, liver biochemical parameter, and intestinal digestive enzyme activity of grass carp, Ctenopharyngodon idellus, and gibel carp, Carassius auratus gibelio, fed with different levels of monocalcium phosphate (MCP). The control diet was prepared with 2% MCP but without phytase (P2.0). The other three experimental diets were prepared with the addition of 1.5, 1.0, and 0.5% MCP, respectively, when supplemented with 500 U/kg neutral phytase in each diet and designated as PP1.5, PP1.0, and PP0.5, respectively. The results indicated that the serum alkaline phosphatase (ALP), alanine transaminase (ALT), and aspartate transaminase (AST) activities, as well as the albumin (ALB) content were increased in grass carp (P < 0.05) and gibel carp (P > 0.05) fed with phytase‐supplemented diets. Meanwhile, the serum cholesterol, high‐density lipoprotein, and total protein contents of the two species of fish were increased in comparison to the control. In addition, dietary phytase inclusion did not significantly affect hepatic ALP, ALT, and AST activities in the two species of carp fed with different levels of MCP. Amylase activity increased in foregut and hindgut of both species when fed with the phytase‐supplemented diets while lipase activity was reduced in the foregut and hindgut in both fish. This study suggests that neutral phytase supplementation increases serum ALP, ALT, and AST activities but does not notably affect these enzyme activities in the liver of the two species of carp when fed different levels of MCP. On the other hand, amylase activity increased while lipase activity was reduced in the intestine of the species of carp fed with phytase‐supplemented diets.  相似文献   

11.
An 8‐week growth trial was conducted to investigate the effects of non‐genetically modified (nGM) soybean (Youchun 06‐1) and genetically modified (GM) soybean (Roundup Ready®) with and without a heat treatment on the growth and health of three Cyprinidae species with different feeding habits (grass carp Ctenopharyngodon idellus, gibel carp Carassius auratus gibelio, and black carp Mylopharyngodon piceus; body weight: 283.0 ± 2.0 g, 60.5 ± 0.7 g, and 261.4 ± 3.1 g). Five diets (FM, nGMS, hnGMS, GMS, and hGMS) were made with fishmeal and full‐fat soybean (Youchun 06‐1, heat‐treated Youchun 06‐1, Roundup Ready®, and heat‐treated Roundup Ready®). The FM diet contained fishmeal as the sole protein source. The experimental diets contained full‐fat soybean meal as 60% of dietary protein. Both temperature (60, 80, 100, and 120°C) and duration (1 and 2 hr) of heating influenced trypsin inhibitor activity (TIA) and protein solubility of nGM soybean and GM soybean. The TIA in GM soybean was higher than that in nGM soybean. After heating at 120°C for 2 hr, each amino acid of soybean treatment showed a slight decline. Neither source of soybean nor heat treatment affected the growth performance, feed utilization, chemical composition of the whole fish body and muscle, and lipase or amylase activity of the three Cyprinidae species (p > 0.05). Heat treatment of soybean meal slightly increased the plasma antioxidant capacity of the three fish and plasma cholecystokinin of black carp and grass carp. The unheated soybean treatment adversely affected the height and density of black carp intestinal villi, and all the soybean treatments caused disruption of the grass carp intestinal epithelium.  相似文献   

12.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

13.
为研究草鱼MSTN-1基因多态性及与早期生长性状和肌肉成分的相关性,本研究扩增出全长为3824 bp的草鱼MSTN-1基因,用长江选育草鱼群体对MSTN-1基因多态性进行筛选和验证。结果共发现3个多态性位点(Locus 1:C1799T,野生型EE/突变型EF;Locus2:C1842T,野生型HH/突变型HI;Locus 3:TGAAGCGCTGGTTCT/2585-,野生型BB/缺失型BD)。利用一般线性模型分析3个位点及其组合型(剔除个体数少于3的组合)与生长性状和肌肉成分的相关性,发现2个位点对幼鱼生长性状表型差异有显著影响,但3个位点对肌肉成分差异均无显著影响。多重比较发现,单倍型HI突变组的体长和体质量显著高于HH野生组,BD突变组的体长和体质量显著性低于BB野生组;多倍型中存在HI突变组合的体长、体质量均显著高于其他组,存在BD突变的组合在体长性状方面显著低于其他组。表明草鱼MSTN-1基因3个SNPs中,HI突变是对草鱼生长性状的有利突变,BD突变是不利突变,而EF突变无显著影响,可将MSTN-1基因作为分子标记辅助草鱼选育的候选基因。  相似文献   

14.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

15.
The present research was designed to investigate the growth promoting and immunostimulating properties of Moringa oleferia leaf meal (MLM) in grass carp. Juvenile grass carp (22.03 g ± 1.164) were fed with diets supplemented with 0, 50, 100 and 150 g/kg MLM for 48 days. At the end of feeding trial, skin mucus was used for analysis of lysozyme, protease, antiprotease and peroxidase activity. Head kidney was used for expression analysis of tumour necrosis factor‐alpha, interleukin‐8 and interferon‐γ. The obtained results showed that fish fed with 100 and 150 g/kg MLM had significant increase in weight gain and specific growth rate (p < .05). However, condition factor was not altered. The MLM (50 and 100 g/kg) inclusion resulted in higher mucus lysozyme and protease activity (p < .05), while peroxidase activity increased only in fish fed with 100 g/kg MLM and antiprotease activity was not altered. Expression of tnf‐α increased in a dose‐dependent manner, and significant (p < .05) increase was recorded in fish fed with 150 g/kg MLM. The expression of il‐8 and ifn‐γ increased in fish fed with 50 and 150 g/kg MLM; however, the increase was not significant (p > .05). In conclusion, supplementing juvenile grass carp feed with MLM up to 150 g/kg has growth promoting and immunostimulating effects.  相似文献   

16.
The increasing numbers of otters (Lutralutra L.), which are protected by the CzechAct of Nature and Landscape Protection, arecausing serious problems for fishpondmanagement. The diet of otters on pond farmsconsists predominantly (80%) of common carp,Cyprinus carpio, and to a lesser extentother pond fish species (perch, Percafluviatilis, zander, Stizostedionlucioperca and grass carp, Ctenopharyngodon idella). The size of carpcaptured by otters ranged between 376–683 mmTL (500 ± 88 mm) and 1,049–11,768 g(3,478 ± 2,867 g). Reconstructed originalweight and length of captured grass carp andperch were 599 and 182 mm TL, and 2,665 and163 g, respectively. In most of prey fishcorpses left by otters, only viscera andassociated parts were consumed. The weight ofindividual common carp corpses was estimated as73.0 ± 24.6 (26.3–95.9)% of theoriginal reconstructed weight, which means thatonly 27.0 ± 17.2 (4.1–73.7)% of fishbody mass was consumed by otters. In perch,62.8% of fish body mass was left unconsumed.Heavy losses have been reported also on fishstocks in ice-covered ponds during the winterperiod, when shoals of resting fish have beendisturbed and stressed due to otter hunting.  相似文献   

17.
利用筛选的13对草鱼多态性微卫星标记,开展了2011至2015年长江中游草鱼亲本增殖放流对野生群体遗传多样性的影响评估。通过对各位点的遗传多样性分析,13个微卫星位点的多态信息含量为0.8622(0.657~0.950),基因多样度为0.8555(0.675~0.936)。15个群体的有效等位基因数为7.4503~10.1536,等位基因丰度为11.483~15.204,说明15个草鱼群体的遗传多样性水平总体较高。遗传分化指数分析表明,群体间不存在显著遗传分化(FST5%)。通过贝叶斯聚类分析和主成分分析可将草鱼群体分为4个组群,根据分组结果以及来源划分分别对草鱼群体进行AMOVA分析,发现遗传变异大部分来自于群体内个体间,组间及组内群体间的分化水平较低(FCT5%,FSC5%),与FST分析结果一致。研究表明,当前草鱼亲本增殖放流模式对野生群体遗传结构影响不明显。  相似文献   

18.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

19.
This study was conducted to compare the growth‐promoting and flesh quality ‐improving effects of three active compounds in Eucommia ulmoides (EU) on grass carp (Ctenopharyngodon idella). Four iso‐nitrogenous diets supplemented with 400 mg/kg inclusion of geniposidic acid (GA), chlorogenic acid (CGA), geniposide (GP) and their combination (GA:CGA:GP = 1:1:1, the mixture) were prepared and fed to grass carp (47.1 ± 0.6 g) for 75 days. The results indicated that weight gain was increased by 5.22%, and feed conversion ratio decreased by 0.07 by dietary CGA (< 0.05). In flesh quality, the four supplementations significantly increased muscle fibre density, total collagen and alkaline‐insoluble collagen in skin, and reduced steaming loss of flesh. In addition, dietary CGA, GP and the active compounds mixture further increased total collagen, alkaline‐insoluble collagen and amino acid in flesh. In collagen genes expression, the expression of COL1A1 in muscle and skin was significantly promoted by the supplementation of GA, CGA, GP and their combination (p < 0.05). In conclusion, the supplementation of GA, CGA, GP and their combination improved the flesh quality of grass carp, and the growth was increased by CGA. CGA played more important roles in growth‐promoting and flesh quality‐improving effects than GP and GA.  相似文献   

20.
In order to investigate the effects of lysine and dissolved oxygen on grass carp, the grass carp were fed with 13, 15 and 17 g kg −1 lysine diet at about 6 mg L−1 (high dissolved oxygen, HO group) or 3.5 mg L−1 (low dissolved oxygen, LO group) dissolved oxygen level, for 8 weeks. The fish were fed to apparent satiation by hand. The results showed that apparent digestibility of protein, energy and dry matter were decreased significantly when grass carp were fed at 3.5 mg L−1 dissolved oxygen, and feed intake (FI) was also inhibited by low dissolved oxygen (< 0.05). Weight gain, protein retention, protein efficiency, feed conversion ratio and amino acid retention of fish at 6 mg L−1 dissolved oxygen level were significantly improved at 3.5 mg L−1 dissolved oxygen level (< 0.05). Weight gain, protein and amino acid retention, and feed efficiency of grass carp at the two dissolved oxygen levels were significantly improved by lysine supplementation (< 0.05). The dietary lysine level and dissolved oxygen of water had an interaction effect on feed conversion ratios (< 0.05). Grass carp fed at low dissolved oxygen level showed lower liver protein and fat contents. Plasma aspartate aminotransferase (AST) activity of grass carp fed at 3.5 mg L−1 dissolved oxygen level was significantly increased compared to 6 mg L−1 dissolved oxygen level (< 0.05). Our results show that low dissolved oxygen level of water is harmful to the liver of grass carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号