首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saline effluents from marine land-based aquaculture production can neither be disposed in common municipal wastewater treatment plants, nor disposed as landfill. Furthermore, stricter environmental regulations require the reduction of phosphorous and organic matter levels from marine environment discharges to minimize eutrophication. Chemical coagulation with FeCl3 and AlSO4 is commonly used for removing phosphorous and suspended solids in wastewater treatment. The capacity of these coagulants for creating particle aggregations depends on the characteristics and chemistry of the treated wastewater, such as the ionic strength or mixing conditions. Marine water has a higher ionic strength than fresh or brackish water, which may be beneficial when using chemical coagulants to treat the effluents from farms operated at high salinities. The following study compared the application of FeCl3 and AlSO4, to treat the two effluents discharged from a marine land-based recirculating aquaculture system (RAS) producing salmon (Salmo salar). The aim of the study was to determine; 1) in what effluent (sludge flow vs. exchange water overflow) at the end-of-pipe treatment the coagulant application is more efficient for the removal of PO43−-P, total suspended solids (TSS), total phosphorous (TP) and total chemical oxygen demand (TCOD); and 2) the optimal coagulant dose to apply and its associated chemical sludge production. The results show that more than 89 % removal of TCOD, TSS and TP is achieved when treating the sludge flow, arguably because the sludge flow contained the largest fraction of the target masses (P and organic matter) discharged from the system. Up to 80 % of TSS removal was achieved by simple sedimentation, and with the highest coagulant dose tested, up to 95 % of TSS could be removed from the effluent. To remove 90 % of PO43−-P, FeCl3 and AlSO4 need to be dosed at a molar ratio of 2.6:1 Fe:PO43−-P and 5.7:1 Al: PO43−-P, respectively. Dosing above 90 % removal efficiency did not significantly affect removal of PO43-P and TSS, but substantially increased the volume of chemical sludge produced. Finally, FeCl3 is proposed as a better overall alternative for P removal at the end-of-pipe treatment in marine land-based RAS.  相似文献   

2.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

3.
循环水养殖系统中的固体悬浮物去除技术   总被引:3,自引:2,他引:3  
循环水养殖系统(Recirculating aquaculture systems,RAS)中固体悬浮物(Suspended solids,SS)的去除效果直接影响到鱼类生长、生物净化效果、系统配置和运行成本等诸多重要因子。根据固体悬浮物产生、物理特性和分布规律,结合颗粒悬浮物去除工艺特点,对去除技术进行系统研究分析。固体悬浮物源自饲料,密度一般为1.05~1.19 g/cm3,运用重力分离、过滤和泡沫分离等工艺通过预处理、粗过滤和精处理三道工艺步骤,可分别去除不同直径的颗粒物质,在达到合理含量的前提下,获得低能耗、低成本和系统稳定运行的综合效果。固体悬浮物的去除符合目标明确、排出及时和区别对待三原则,去除工艺注重相关技术的优化集成。  相似文献   

4.
This research was carried out to study the effect of turbidity on the effectiveness of ultraviolet light (UVC) for removing heterotrophic bacteria (HB) from two commercial recirculating aquaculture systems (RAS). We developed a simple and straightforward UV disinfection model based on water turbidity to predict the cost‐effectiveness of disinfection. The UVC from RAS1 (12.8 m3, 80 L min?1, indoor system) was tested at 9.2, 9.9, 16.3, 17.2, 23.1 and 28.2 nephelometric turbidity units (NTU) after 24 h of exposure. The RAS2 (140 m3, 1140 L min?1, outdoor system) was tested at 8.0, 9.2, 11.0, 12.1, 16.0, 24.2, 27.0, 31.3 and 31.7 NTU after 72 h. An increase in turbidity in the water was achieved by rearing Oreochromis niloticus fish. The RAS1 achieved a maximum UV efficiency (89.8%≈1 Log) at 9.2 NTU after 24 h and RAS2 at 8.0 NTU (86.4%≈0.9 Log) after 72 h of exposure. For RAS1, the UVC removed 90% of HB in 24 h when the turbidity was <9.9 NTU. For RAS2, without restrictions on particle size and relatively high phytoplankton abundance, the UV was unlikely to be a cost‐effective way of removing HB at turbidity above 11.0 NTU.  相似文献   

5.
The aim of the study was to determine the possibility of experimental media (agglomerate elastomers EPP) application as biological media bed, which serves the purpose of water purification in recirculating aquaculture systems (RAS). RAS enables mass‐production of fish in small volume of water in a limited area. This involves the possibility of multiple usage of water during culture. However, for that purpose of maintaining proper physico‐chemical parameters, water purification from products of metabolism, especially toxic nitrogen compounds, is required. One of the simplest and most effective ways to achieve it is combining application of two types of water filtration: mechanical and biological. It is needed to study new media for biological bed with proper filling is able to purify water from toxic nitrogen compounds.  相似文献   

6.
Two separate geotextile bag systems were evaluated as a means for capturing and dewatering bio-solids in the effluent stream from recirculating aquaculture systems (RAS). Each geotextile bag system used a high molecular weight cationic polyacrylamide (PAM) polymer as a flocculant-aid. The two systems were operated under freshwater and brackish water conditions. A complete analysis including water quality and agronomic sludge analysis was conducted at the North Carolina State University Fish Barn – a large-scale, freshwater RAS demonstration and growout facility. An evaluation of water quality and performance of a similar geotextile bag system was also conducted at the Marine Aquaculture Research Center near Marshallberg, North Carolina, USA, under brackish conditions (15 PPT). Results indicated that performance of each of the systems was similar with TSS, COD, TN, and TP removal greater than 95%, 65%, 50%, and 38%, respectively, for both systems. Analysis of the sludge collected in the freshwater system after 70 days in a dewatering, inactive mode, showed a moisture content (MC) of 86%, or 14% dry matter (DM), indicating the system was effective at passively dewatering the bio-solids. Nutrient removal efficiency may be system specific based on the geotextile bag size and influent flow rate.Geotextile bag systems using flocculant-aids are an efficient means for capturing and dewatering waste solids from RAS effluents. Optimized geotextile bag system designs depend on flow rate, feed rate, and solids dewatering time, and fate of the treated effluent. This evaluation will aid in predicting the expected performance and determining the appropriate size of a geotextile bag system. The type of treatment required downstream from the geotextile bag system used for solids capture in a RAS wastewater treatment system will depend on the intended fate of the treated effluent.  相似文献   

7.
复合池塘养殖系统湿地水质净化功能研究   总被引:3,自引:1,他引:2  
由潜流和表面流湿地组成复合人工湿地,与池塘有机结合构成鱼塘-湿地水循环系统应用于草鱼苗种培育,研究了该系统对池塘水质的改善效果。结果显示:在760 mm/d的水力负荷率条件下,复合湿地系统对NH4+-N、NO2--N、NO3--N、TN、TP、COD和TSS的平均去除率分别为(33.56±3.71)%、(50.73±3.95)%、(46.33±4.95)%、(27.99±2.78)%、(58.15±3.38)%、(29.60±2.24)%和(84.49±1.77)%;湿地出水水质符合渔业水质标准(GB11607-89)要求。结果表明鱼塘-湿地水循环系统对养殖用水具有较好的净化效果。  相似文献   

8.
Intensive, recirculating aquaculture systems create concentrated wastes high in solid content. Geotextile has successfully dewatered aquaculture effluent; however, burlap, made from natural plant fiber, may provide similar filtering capabilities at a lower cost. The trial was designed as a 2 × 2 factorial to evaluate burlap bags and geotextile bags with or without polymer addition for dewatering Nile tilapia, Oreochromis niloticus, effluent from an intensive biofloc production system. There were no significant interactions (P > 0.05) between the main effects on the removal efficiency of total suspended solids (TSS) concentration. There were no significant differences (P > 0.05) in the main effect of textile; however, there were significant differences (P≤ 0.001) in the main effect of polymer on the removal efficiency of TSS concentration from effluent. Overall, TSS removal efficiency in textile‐only treatments was 81%, whereas textile treatments in combination with polymer removed 98%. Partial budget analysis indicated that the cost per kilogram of solids (dry weight) removed from untreated effluent was US$1.52, 1.51, 0.16, and 0.14 for the geotextile with polymer (GP), geotextile without polymer (GNP), burlap with polymer (BP), and burlap without polymer (BNP) treatments, respectively. The BP could provide an effective treatment process for removing TSS in discharged effluent.  相似文献   

9.
以半滑舌鳎皮肤溃疡病的致病菌灿烂弧菌Vibrio splendidus和哈维氏弧菌Vibrio harveyi为指示菌,研究了循环水养殖系统各环节中细菌分布和消除工艺。结果表明,不健康的苗种携带病原菌进入养殖系统后,可分布在残饵、池壁污物、养殖工具及循环水各处理环节。而弧形筛过滤、曝气池气升、紫外线消毒是循环水养殖系统消除细菌的三大环节。用5×10-6 mol/L的KMnO4溶液浸泡工具2h,对细菌的杀灭率达到100%;用25×10-6 mol/L的KMnO4溶液擦拭养殖池壁污物1.5min后,细菌杀灭率高于90%;用100×10-6 mol/L浓度的H2O2溶液对养殖舌鳎病鱼进行药浴消毒处理10min,对体表细菌的杀灭率达到了94.49%。对鲆鲽鱼类循环水养殖系统中细菌的分布和消除效果进行了系统研究,研究结果可为建立循环水健康养殖工艺提供理论数据和参考。  相似文献   

10.
This study evaluated the growth and immune response of gibel carp (Carassius auratus gibelio) cultured under no feed addition biofloc technology (BFT) system at different total suspended solid (TSS) concentrations (10, 300, 600, 800 and 1,000 mg/L for group BF0‐NF, BF300‐NF, BF600‐NF, BF800‐NF and BF1000‐NF) for 30 days. The results demonstrated that bioflocs contained rich nutrients, and gibel carp eaten bioflocs showed higher weight gain, specific growth and survival. Digestive enzyme activities such as pepsin and amylase increased significantly in BF300/600/800/1000‐NF groups than those in BF0‐NF group. Antioxidant response including superoxide dismutase and total antioxidant capacity in serum and skin mucus was also enhanced significantly (< .05). In addition, six immune‐related genes were examined by RT‐qPCR. Compared with BF0‐NF group, expression levels of immune genes intelectin (ITLN), dual specificity phosphatase 1 (DUSP 1), keratin 8 (KRT 8), myeloid‐specific‐peroxidase (MPO), c‐type lysozyme (c‐lys) and interleukin‐11 (IL‐11) were up‐regulated by 78.1‐, 23.9‐, 13.8‐, 138.8‐, 401.8‐ and 91.1‐fold, respectively. The highest expression values were observed at TSS of 600–800 mg/L. This study suggested that bioflocs can be uptaken by gibel carp as a food source, and have a potential to be used as a supplemental food for aquaculture.  相似文献   

11.
This study evaluated the rate of sedimentation from water under various salinities, over a time period of 72 h. The particles come from soils that are commonly found in shrimp growing areas of Alabama: Black Belt Prairie, Piedmont Plateau, and Upper Coastal Plain. Different salinity treatments and settling times resulted in significant differences (P≤ 0.05) in the reduction of turbidity and TSS for each soil type. Solutions containing 2 ppt salinity had a similar rate of turbidity reduction as the solutions with 5, 10, or greater ppt treatments. Concentrations of turbidity and TSS decreased rapidly between 1 and 12 h of sedimentation; very little decline was observed during the time intervals 12–72 h. Higher salinity treatments yielded settling patterns similar to the 2 ppt salinity treatment. After 1 h, turbidity was removed by 65% in the control compared with 85% salinity treated samples. Variations in turbidity and TSS among the three sediments suggest that finer particles, the Piedmont Plateau soils, settled at a slower rate than larger particles. This difference occurs because the percentage of turbidity and TSS removed was significantly higher in mineralized waters compared to freshwater. Therefore, a small amount of salt, 2 ppt, can be used in pond aquaculture treatments to reduce the turbidity and TSS concentrations in shrimp ponds.  相似文献   

12.
Recirculating aquaculture system (RAS) is an increasingly popular alternative to open aquaculture production systems. However, off‐flavours and odours can accumulate in the fish flesh from the circulating water and decrease the fish meat quality. Off‐flavours are typically caused by geosmin (GSM) and 2‐methylisoborneol (MIB) that are lipophilic compounds formed as secondary by‐products of bacterial metabolism. Even though GSM and MIB are not toxic, they often are disliked by consumers, and both have very low human sensory detection limits. Multiple methods have been suggested to remove or decrease GSM and MIB in fish, including ozonation, advanced oxidation processes (AOP)s and adsorption removal from water using activated carbon and/or zeolites. So far, purging with fresh water is the only efficient method available to remove the off‐flavours. There are multiple analytical methods available for the extraction and separation of GSM and MIB from fish flesh and water. This review discusses the current knowledge of GSM and MIB formation, the challenges faced by RAS farms due to these compounds and process solutions available for their removal.  相似文献   

13.
Nitrogen (N) and phosphorus (P) budgets in a bioflocs technology (BFT) aquaculture system and a recirculation aquaculture system (RAS) during over-wintering of tilapia (GIFT Oreochromis niloticus)for 64 d were compared in the current study. Fish feed was the major input of N in both systems, specifically, 94±0 % and 82±4 % for the RAS and BFT aquaculture system, respectively. The rate of N recovery in the BFT aquaculture systems was estimated to be 48±5 % of input N, which was significantly different from that of the RAS (37±4 %). There was no significant difference between the RASs and BFT aquaculture systems in terms of P recovery rate. The regular backwashing of the drum filter and biological filter in RAS accounted for 41 ± 2 % of input N and 39 ± 2 % of input P. Approximately 54 % of unassimilated nitrogen N was removed by nitrification in the BFT aquaculture systems. The results from the present study suggest that nitrification may be the dominant pathway for ammonia removal in a BFT aquaculture system rather than by heterotrophic bacterial assimilation.  相似文献   

14.
The ability of the halophyte, Salicornia virginica, planted in drainage lysimeters to biomitigate dissolved nutrients in effluent from a recirculating aquaculture system (RAS) for marine finfish was evaluated. Seawater effluent from a RAS producing black sea bass, Centropristis striata (filtered to reduce total suspended solids), was used as irrigant. Plant growth and dissolved N and P removal were determined as a function of leachate fraction (LF%) – that is, proportion of irrigant that leaches from the plant‐substrate lysimeter. Lysimeters were irrigated weekly to produce 30, 40, and 50% LF. A control (unplanted) lysimeter was included at the 30% LF. Plant growth was excellent in all LF% treatments until Day 141 when salt buildup in the lysimeter substrate inhibited nutrient uptake. Salt accumulation was mitigated at higher LF%, so that plant biomass and net removal (μg) of dissolved N and P by the p‐s lysimeter remained higher (P < 0.05) at the 40 and 50% than at the 30% LF. On Day 141, percent removal efficiency at the 50% LF was 79.2% for inorganic N and 73.9% for total phosphorus. Through Day 355, substrate salinity was minimized and plant biomass and nutrient removal were maximized at the 50% LF. S. virginica is an effective biofilter for dissolved nutrients in effluent from an RAS for marine finfish.  相似文献   

15.
As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation–flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99% via settling, with final TSS values ranging from as low as 10–17 mg/L. Although not intended to be used for reactive phosphorus (RP) removal, RP was reduced by 92–95% by removing most of the TSS in the wastewater to approximately 1 mg/L–P. Dosage requirements were fairly uniform, requiring between 15 and 20 mg/L of polymer. Using these dosages, estimated costs range from $4.38 to $13.08 per metric tonne of feed.  相似文献   

16.
《Aquacultural Engineering》2006,34(4):235-249
As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation–flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99% via settling, with final TSS values ranging from as low as 10–17 mg/L. Although not intended to be used for reactive phosphorus (RP) removal, RP was reduced by 92–95% by removing most of the TSS in the wastewater to approximately 1 mg/L–P. Dosage requirements were fairly uniform, requiring between 15 and 20 mg/L of polymer. Using these dosages, estimated costs range from $4.38 to $13.08 per metric tonne of feed.  相似文献   

17.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

18.
Design information for the use of sand beds to remove suspended solids from wastewater discharged from recirculating aquaculture systems (RAS) was developed. Wastewater from a commercial RAS tilapia farm with 2% total solids and 1.6% total suspended solids (TSS) was applied to sand columns to determine infiltration rates and phosphorus capture. Various hydraulic loading rates and drying periods between application events were evaluated. Infiltration rates stabilized after five application events to 3.5 cm/day (S.D.=1.7). Practically, all suspended solids were captured at the top of the columns, creating the primary resistance to infiltration. Concrete sand removed approximately 93% of the soluble phosphorous in the wastewater and wollastonite, an economical aggregate alternative to sand, removed at least 98%. A modified Darcy equation is presented to predict infiltration based upon TSS and the number of sequential applications.  相似文献   

19.
Marble goby (Oxyeleotris marmorata Bleeker), with its high demand and price, has a great potential as a profitable commercial aquaculture candidate in Malaysia and Southeast Asia region. Efforts are being made to produce this species in a better controlled culture environment like recirculating aquaculture system (RAS) due to poor growth performance and disease problems shown by conventional cage and outdoor pond culture systems. Quantification of waste excreted by fish is critical to RAS design. This study was conducted to characterize the waste excretion rates of marble goby fed with different diets (live food and minced fish). Ammonia-N (TAN), urea-N, nitrite-N (NO2-N), nitrate-N (NO3-N), total-N (TN), organic-N (ON), feces-N, 5-day biochemical oxygen demand (BOD5) and total suspended solid (TSS) produced from marble goby were determined over a 72-h excretion period. Under given experimental conditions, the results showed that feed type had significant influence on the waste excretion rates, with marble goby fed live tilapia (Oreochromis niloticus) exhibiting significantly (P < 0.05) the lowest amount of waste excretion comparable to that of fish fed live common carp (Cyprinus carpio) and minced scads (Decapterus russellii). This indicates that feeding marble goby with tilapia poses less adverse effects on water quality and is thus a suitable diet for this species. The waste excreted by the fish is composed of nitrogenous excretion (TAN, Urea-N, ON, Feces-N), and productions of dissolved biodegradable organic substances (BOD5) and TSS (TSSfeces + TSSwater). About 58-71% of the nitrogen consumed in food was excreted and its rate depended mainly on the feed type. TAN was the chief end-product of protein metabolism; about 74-84% of the daily total nitrogenous excretion was TAN. Urea-N accounted for 13-21% of the daily total nitrogenous excretion indicating that urea-N is an important nitrogenous excretory end-product in marble goby. The waste excretion data presented in this study can be served as a pre-requisite for designing a RAS for this species. The overall BOD5 and TSS production found in this study also point to the need for including bio-filtration unit and suspended solids removal mechanism in the RAS design.  相似文献   

20.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号