首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
小鼠卵母细胞去核方案的优化   总被引:2,自引:0,他引:2  
为了优化小鼠卵母细胞去核方案,本研究对比了透明带磨口刺入和透明带直接刺入两种去核方法(分别简称磨口法和刺入法)、蔗糖处理与否、CB的浓度及去核针内径对小鼠卵母细胞的去核效率的影响,及CB浓度对去除部分胞质(不去核)的孤雌胚早期发育的影响。结果:(1)无论是磨口法还是刺入法,添加3%蔗糖和对照组之间的去核成功率及去核操作时间差异均不显著(P>0.05);(2)CB浓度为5μg/mL、10μg/mL和20μg/mL时,各试验组的操作时间差异不显著(P>0.05),但10μg/mL的CB操作速度最快,磨口法三个试验组间去核成功率差异不显著(P>0.05),刺入法在CB浓度为5μg/mL、10μg/mL时去核成功率显著高于20μg/mL组(P<0.05),磨口法去核成功率显著高于刺入法(P<0.05);(3)去除部分胞质的孤雌胚卵裂率各试验组之间差异不显著(P>0.05),20μg/mLCB处理组囊胚率显著低于其它处理组(P<0.05);(4)在CB浓度为10μg/mL的操作液中,分别用内径为10μm、15μm和20μm内径的去核针,各试验组间操作时间差异不显著(P>0.05),15μm内径的去核针操作速度较快,磨口法去核成功率差异不显著(P>0.05),15μm去核针去核成功率较高,刺入法应用20μm去核针的去核成功率显著低于其它组(P<0.05)。结果表明,磨口法在10μg/mL CB和15μm内径去核针条件下提高了去核成功率(90.8%)及去核速度(50sec/个),且不影响孤雌胚的体外发育率。  相似文献   

2.
鲜木薯抗性淀粉的制备与性质   总被引:1,自引:1,他引:0  
为了提高木薯抗性淀粉的含量,该研究以鲜木薯湿淀粉为原料,采用压热-酶法制备抗性淀粉,通过单因素试验和响应面分析,获得抗性淀粉的最佳制备条件为:淀粉乳浓度10%、压热时间80 min、压热温度120℃、耐热α-淀粉酶添加量1 U/g、耐热α-淀粉酶作用时间15.75 min,普鲁兰酶添加量0.83 U/g,普鲁兰酶作用时间5.86 h、超声波处理时间2 min。在此条件下抗性淀粉的质量分数是15.48%。电镜试验表明淀粉颗粒经压热-酶法处理后表面形态发生变化;X-射线衍射表明抗性淀粉的结晶类型为B型,结晶度增加;体外消化模拟试验表明:与原淀粉相比,抗性淀粉消化特性降低。该研究可为抗性淀粉的工业化生产和应用提供参考。  相似文献   

3.
  【目的】  研究不同磷肥用量对马铃薯淀粉理化性质及产量的影响,为不同用途马铃薯的磷肥科学管理提供参考。  【方法】  以早熟马铃薯‘尤金’和中晚熟马铃薯‘克新13号’为供试品种,在黑龙江省开展了两年田间试验。分别设置P2O5 用量为0 (CK)、45 (低磷 Low P, LP)、90 (中磷 Middle P, MP) 和135 (高磷 High P, HP) kg/hm2 4个处理,测定了收获后马铃薯淀粉的部分理化性质、淀粉产量等指标。  【结果】  两年平均结果表明,与CK相比,增施磷肥可降低马铃薯直链淀粉含量,‘尤金’降幅为3.19%~5.14%,‘克新13号’降幅为2.97%~9.05%,其中HP处理与CK差异显著 (P < 0.05,2019年‘尤金’除外)。随着磷肥用量的增加,淀粉的透明度和膨胀度提高,溶解度降低。与CK相比,‘尤金’HP处理的淀粉透明度提高15.00% (P < 0.05),膨胀度提高3.94%,溶解度降低12.23% (P < 0.05);‘克新13号’HP处理的淀粉透明度提高25.74% (P < 0.05),膨胀度提高7.90% (P < 0.05),溶解度降低21.84% (P < 0.05)。‘尤金’淀粉颗粒的中位径 (D50) 在MP处理最高,较CK增加11.58% (P < 0.05);‘克新13号’淀粉颗粒的中位径 (D50) 随施磷量的增加而降低,HP处理较CK降低5.02% (P < 0.05),但‘克新13号’的中位径明显高于‘尤金’。‘尤金’的MP处理淀粉产量较CK平均增加31.36% (P < 0.05),‘克新13号’的HP处理淀粉产量较CK平均增加29.66% (P < 0.05)。  【结论】  适量增施磷肥有助于提高马铃薯块茎的干物质含量及产量,从而提高马铃薯淀粉的产量。适量的磷肥还可降低马铃薯直链淀粉含量,增加支链淀粉含量,提高淀粉的透明度和膨胀度,提高淀粉的品质。在本研究条件下,综合磷对马铃薯淀粉理化性质和产量的影响,‘尤金’的P2O5适宜用量为90 kg/hm2,‘克新13号’的P2O5 适宜用量为135 kg/hm2。  相似文献   

4.
为了探究超声处理对糯米和非糯米淀粉颗粒结构和功能特征的影响,改善稻米淀粉的品质,本试验以糯稻(Y26)、非糯稻(Y9)淀粉为材料,对其进行超声处理,分析处理后淀粉的结构热力学性质及消化特性。结果表明,与对照组相比,两种淀粉经超声处理后各性质变化趋势相似,淀粉颗粒表面产生凹陷、直链淀粉含量升高、结晶度下降、傅立叶变换红外光谱(FTIR)的1 047 cm-1/1 022 cm-1比值先增加后降低,弹性模量(G')降低,凝胶强度减弱,糊化终止温度与起始温度之差(Tc-To)减小,快速消化淀粉(RDS)和抗性淀粉(RS)含量增加,但两种淀粉的变化程度有一定差异。本研究初步奠定了生产中根据对淀粉性质的需求来确定合适超声处理条件的理论基础。  相似文献   

5.
为优化藜麦淀粉碱法提取工艺,以藜麦为试验材料,采用岭脊分析法研究料液比、NaOH 质量分数和浸提时间对淀粉提取率的影响,并对藜麦淀粉的颗粒形貌、化学结构及淀粉糊化特性进行研究。结果表明,碱法提取藜麦淀粉的优化工艺参数为料液比1:5 g/mL、NaOH质量分数0.2%和浸提时间5.5 h,淀粉提取率为98.94%±0.26%;藜麦淀粉为限制性膨胀淀粉,形态多呈不规则形,具有-OH、-CH2、-CHO、C-O-C和吡喃环典型淀粉分子官能团;随静置时间增加,淀粉透光率降低,凝沉体积增加,12 h后基本稳定;藜麦淀粉糊第四次冻融循环后达到稳定状态;对淀粉凝胶质构特性分析,硬度、内聚性、弹性、胶黏性和咀嚼性5个指标都随藜麦淀粉糊浓度增加而增大;流变性分析表明藜麦淀粉糊为假塑性流体,其弹性优于黏性。该文系统研究藜麦淀粉提取工艺和糊化特性,拓展了新的淀粉资源,同时也为藜麦淀粉的生产和应用提供一定的借鉴和参考。  相似文献   

6.
以高产优质粳稻松粳9号和稻花香2号为材料,利用开放式空气CO2浓度富集系统(FACE)实验平台,研究CO2浓度增高对水稻籽粒淀粉代谢相关酶活性的影响。试验设正常大气CO2浓度(400±40μmol·mol-1)和高CO2浓度(600±60μmol·mol-1),测定开花后两个水稻品种籽粒中ADPG焦磷酸化酶、淀粉合成酶和淀粉分支酶活性的变化。结果表明,CO2浓度增高对不同灌浆进程中酶活性的影响程度有显著差异,对乳熟期之后ADPG焦磷酸化酶、可溶性和颗粒型淀粉合成酶活性的表达均有较明显的促进作用,仅阻碍了乳熟期籽粒中淀粉分支酶活性的表达;淀粉代谢相关酶活性对CO2浓度增高的响应因品种而异,松粳9号籽粒中ADPG焦磷酸化酶活性受CO2浓度增高的影响较大,而稻花香2号淀粉合成酶活性受其影响更大。说明随着灌浆进程的推进,CO2浓度增高对淀粉生物合成途径中关键酶活性表达的影响程度存在明显的时段特征,且不同品种的响应程度有显著差异,总体来看,CO2浓度增高可在一定程度上促进淀粉代谢相关酶活性的表达。  相似文献   

7.
为探讨经济实用的高浓度奶牛场污水预处理方法,该研究开展了絮凝预处理对膜生物反应器(Membrane Bioreactor,MBR)膜污染的影响试验,试验采用高浓度奶牛场污水原水和絮凝出水作为MBR进水依次运行,对比分析了不同进水的膜污染规律及其原因。结果表明,絮凝出水作为MBR进水时膜污染速率较污水原水降低47%且膜组件的维护性清洗时间间隔由10 d延长至16 d;MBR处理污水原水的膜池混合液中胞外聚合物(Extracellular Polymeric Substances,EPS)和溶解性微生物产物(Soluble Microbial Products,SMP)浓度分别为4.76和3.94 g/L,而处理絮凝出水时的EPS和SMP浓度值分别为3.97和2.23 g/L。两阶段MBR膜池混合液各粒径值总体上均呈现先增大后减小的趋势,第1和第2阶段的最大粒径体积百分比分别出现在第16天和第23天,第1阶段EPS浓度和SMP浓度均随着颗粒粒径的增大而减小,第2阶段EPS浓度随着颗粒粒径的增大而增大但SMP浓度与颗粒物粒径之间无变化规律;MBR处理污水原水的膜池混合液颗粒粒径的峰值较分散,且16 d后峰值向小粒径方向移动,而处理絮凝出水的峰值粒径相对稳定,且峰值粒径对应的最大体积百分比从3.57%增加至5.95%。MBR对2种进水的化学需氧量(Chemical Oxygen Demand,COD)去除率均可达90%以上,氨氮(Ammonia Nitrogen,NH3-N)去除率均接近90%,对絮凝出水的总磷(Total Phosphorus,TP)处理效果高于污水原水。絮凝预处理使膜池混合液的EPS和SMP浓度降低且SMP蛋白质浓度显著降低(P<0.05)、膜池混合液颗粒粒径显著增加(P<0.05),有效减缓了MBR的膜污染,絮凝预处理与MBR组合可望为高浓度奶牛场污水处理提供可靠的技术途径。  相似文献   

8.
为寻找改善普通米淀粉制品的结构及品质的新型食品添加剂,该文以普通米淀粉为原料,采用快速黏度分析仪、扫描电子显微镜、质构分析仪、全自动X射线衍射仪及示差扫描量热仪等手段,研究添加锥栗、马铃薯与绿豆回生抗性淀粉(retrograded resistant starch,RSⅢ)对米淀粉凝胶微观结构及理化性质的影响。结果表明:添加锥栗、马铃薯及绿豆RSⅢ对米淀粉凝胶的结构及性质产生显著影响(P0.01),以锥栗RSⅢ的作用最为突出。添加锥栗、马铃薯与绿豆RSⅢ对米淀粉糊的黏度特性没有影响(P0.05)。未添加RSⅢ的米淀粉凝胶存在很多不规则、深浅不一的大洞,而加入RSⅢ使米淀粉凝胶的网状结构变得更为规整、致密,且其胶着性与黏聚性变化不大(P0.05);添加锥栗、马铃薯与绿豆RSⅢ后能加速米淀粉凝胶的形成,与未添加RSⅢ的米淀粉凝胶比,其硬度分别增加了2.38、1.97和1.25倍(P0.01),黏着性分别增加2.56、1.99和1.32倍(P0.01),弹性增加1.07、0.81和0.53倍(P0.01)。米淀粉以A-型晶体占优,锥栗RSⅢ以V-型晶体占优,马铃薯与绿豆RSⅢ均以B-型晶体占优;不加或加入RSⅢ的米淀粉凝胶粉末都转变为以V-型晶体为主,且总相对结晶度没有改变(P0.05)。加入RSⅢ后的米淀粉糊除有低温吸热峰外还出现高温吸热峰,是否添加RSⅢ对低温吸热峰的温度参数影响不大(P0.05),但吸热焓显著降低(P0.01);而对于高温吸热峰,添加马铃薯与绿豆RSⅢ的各项参数没有差别(P0.05),但比添加锥栗RSⅢ的显著增高(P0.01)。可见添加不同来源的RSⅢ可以有效改善米淀粉凝胶的结构与品质。该研究结果为抗性淀粉用于提高米制品品质与营养功能的研究和生产提供了重要参考。  相似文献   

9.
为探究钙盐作为冷冻保护剂与高浓度糖液浸渍组合在常温下进行渗透脱水处理对冷冻蓝莓融化后质地品质的影响。对比以丙酸钙、乳酸钙、氯化钙为代表的3种钙盐冷冻保护剂及质量浓度为0.5、1.5、3.0、5.0 g/mL丙酸钙处理对冻融蓝莓品质的影响。通过观测蓝莓冻融后外观,测定硬度值、弹性、咀嚼性、胶着性、内聚性和回复性品质指标及可溶性果胶、共价结合型果胶和离子结合型果胶的含量。结果表明:添加钙盐结合糖液渗透脱水处理组均可减少蓝莓冻融后皱缩和质地瘫软现象,丙酸钙结合糖液渗透脱水处理组的汁液流失率比对照组降低约25.42%,显著低于(P<0.05)其他处理组,丙酸钙处理组为较优的钙盐添加种类。对丙酸钙添加浓度进行优化筛选,发现当丙酸钙添加浓度为1.5 g/mL时可显著降低( P <0.05)蓝莓果实的汁液流失和细胞膜透性,冻融后硬度为1.54 N、弹性0.75 mm,可溶性果胶、共价结合型果胶和离子结合型果胶含量分别达到1.03、0.83 和0.68 mg/g,减少蓝莓果实的质地瘫软现象并保持最佳冻融品质。丙酸钙浓度为1.5 g/mL结合渗透脱水技术使冻融蓝莓具有更好的品质,有利于食用和加工。研究结果不仅为解决蓝莓加工行业出现的由于长期冷冻所造成果实质地瘫软问题提供数据基础,还为研发提升果蔬原料冷冻贮藏品质的助冻剂及改性技术提供一定的理论依据。  相似文献   

10.
纳米级大米淀粉的制备及性质   总被引:5,自引:2,他引:3  
为了探索纳米淀粉的新型制备方法及可行性,采用超高压均质和超微粉碎制备了纳米级大米淀粉,并研究了其颗粒粒度、吸湿性能、溶解度和膨胀率等理化性质.结果表明,超高压均质和超微粉碎能明显减小大米淀粉的颗粒粒度,成功制得纳米级大米淀粉,且随着大米淀粉粒度的减小,其吸湿性能、溶解度和膨胀率明显增加,说明纳米级大米淀粉的水合能力增强,体现了纳米级大米淀粉的表面效应和小尺寸效应.  相似文献   

11.
Particle‐stabilized emulsions, called Pickering emulsions, can be produced by using starch particles. In this work we studied how the properties of the starch particles affect the droplet size and creaming of such emulsions. In the study, various sizes of starch particles were generated by two different methods and used to stabilize Pickering emulsions. Sedimentation according to Stokes’ law was used to separate small and large starch granules. Acid hydrolysis was another method used to obtain smaller particles. All samples were modified with octenyl succinic anhydride (OSA) to increase their hydrophobicity with a level of OSA substitution between 1.8 and 3.1%. The size of starch particles was the main factor influencing emulsion droplet sizes. Furthermore, the droplet size decreased as the starch concentration increased. Using small starch particles with sizes <10 μm produced stable emulsions with smaller droplet size compared with larger sizes of starch particles, >10 μm. When subjected to acid hydrolysis, smaller starch particles were generally obtained, which could subsequently create smaller emulsion droplets. The emulsion index increased for the acid‐hydrolyzed starch owing to the size reduction of starch particles. The shape of the starch seemed to have a minor impact on the droplet size and the creaming of Pickering emulsions.  相似文献   

12.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion was prepared by homogenizing 5 wt % corn oil with 95 wt % aqueous solution (1 wt % lecithin, 100 mM acetic acid, pH 3.0) using a high-pressure valve homogenizer. This emulsion was diluted with aqueous chitosan solutions to form secondary emulsions with varying compositions: 1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0-0.04 wt % chitosan (pH 3.0). The particle size distribution, particle charge, and creaming stability of the primary and secondary emulsions were measured. The electrical charge on the droplets increased from -49 to +54 mV as the chitosan concentration was increased from 0 to 0.04 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically and the emulsions became unstable to creaming when the chitosan concentration exceeded 0.008 wt %, which was attributed to charge neutralization and bridging flocculation effects. Sonication, blending, or homogenization could be used to disrupt flocs formed in secondary emulsions containing droplets with high positive charges, leading to the production of emulsions with relatively small particle diameters (approximately 1 microm). These emulsions had good stability to droplet aggregation at low pH (< or =5) and ionic strengths (<500 mM). The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to environmental stresses.  相似文献   

13.
Casein and whey protein were hydrolyzed using 11 different commercially available enzyme preparations. Emulsion-forming ability and emulsion stability of the digests were measured as well as biochemical properties with the objective to study the relations between hydrolysate characteristics and emulsion properties. All whey protein hydrolysates formed emulsions with bimodal droplet size distributions, signifying poor emulsion-forming ability. Emulsion-forming ability of some casein hydrolysates was comparable to that of intact casein. Emulsion instability was caused by creaming and coalescence. Creaming occurred mainly in whey hydrolysate emulsions and in casein hydrolysate emulsions containing large emulsion droplets. Coalescence was dominant in casein emulsions with a broad particle size distribution. Emulsion instability due to coalescence was related to apparent molecular weight distribution of hydrolysates; a relative high amount of peptides larger than 2 kDa positively influences emulsion stability.  相似文献   

14.
Oil-in-water (O/W) emulsions containing small oil droplets (d32 approximately 0.22 microm) stabilized by sodium dodecyl sulfate (SDS)-fish gelatin (FG) membranes were produced by an electrostatic deposition technique. A primary emulsion containing anionic SDS-coated droplets (zeta approximately -40 mV) was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (20 wt % corn oil, 0.46 wt % SDS, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic SDS-FG-coated droplets (zeta approximately +30 mV) was formed by diluting the primary emulsion with an aqueous fish gelatin solution (10 wt % corn oil, 0.23 wt % SDS, 100 mM acetic acid, 2.00 wt % fish gelatin, pH 3.0). The stabilities of primary and secondary emulsions with the same oil concentration to thermal processing, ionic strength, and pH were assessed by measuring particle size distribution, zeta potential, microstructure, destabilized oil, and creaming stability. The droplets in secondary emulsions had good stability to droplet aggregation at holding temperatures from 30 to 90 degrees C for 30 min, [NaCl] < or = 100 mM, and pH values from 3 to 8. This study shows that the ability to generate emulsions containing droplets stabilized by multilayer interfacial membranes comprised of two or more types of emulsifiers, rather than a single interfacial layer comprised of one type of emulsifier, may lead to the development of food products with improved stability to environmental stresses.  相似文献   

15.
Multilayer emulsions containing citral were prepared by the layer-by-layer deposition technique based on the electrostatic interaction between negatively charged emulsion droplets and two positively charged biopolymer coatings, chitosan (CS) and ε-polylysine (EPL). The optimum concentrations of both CS and EPL were determined through the ζ-potential and particle size measurements and were found to be 1.5 mg/mL for CS and 6 mg/mL for EPL. Quartz crystal microbalance with dissipation monitoring (QCM-D) was conducted to monitor the binding between emulsion droplets and cationic polymers, and our results proved the existence of strong interactions between emulsions and the cationic polymer coatings. The stability of citral and the production of the off-flavor compounds were analyzed by solid-phase microextraction gas chromatography (SPME-GC). The results suggested that the addition of the cationic CS interfacial layer was effective in improving the stability of citral during storage.  相似文献   

16.
Oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin (beta-Lg)-pectin membranes were produced using a two-stage process. A primary emulsion containing small droplets (d(32) approximately 0.3 microm) was prepared by homogenizing 10 wt % corn oil with 90 wt % aqueous solution (1 wt % beta-Lg, 5 mM imidazole/acetate buffer, pH 3.0) using a high-pressure valve homogenizer. The primary emulsion was then diluted with pectin solutions to produce secondary emulsions with a range of pectin concentrations (5 wt % corn oil, 0.45 wt % beta-Lg, 5 mM imidazole/acetate buffer, 0-0.22 wt % pectin, pH 3.0). The electrical charge on the droplets in the secondary emulsions decreased from +33 +/- 3 to -19 +/- 1 mV as the pectin concentration was increased from 0 to 0.22 wt %, which indicated that pectin adsorbed to the droplet surfaces. The mean particle diameter of the secondary emulsions was small (d(32) < 1 microm) at relatively low pectin concentrations (<0.04 wt %), but increased dramatically at higher pectin concentrations (e.g., d(32) approximately 13 microm at 0.1 wt % pectin), which was attributed to charge neutralization and bridging flocculation effects. Emulsions with relatively small mean particle diameters (d(32) approximately 1.2 microm at 0.1 wt % pectin) could be produced by disrupting flocs formed in secondary emulsions containing highly negatively charged droplets, for example, by sonication, blending, or homogenization. The particles in these emulsions probably consisted of small flocs containing a number of protein-coated droplets bound together by pectin molecules. These emulsions had good stability to further particle aggregation up to relatively high ionic strengths (< or =500 mM NaCl) and low pH (pH 3). The interfacial engineering technology used in this study could lead to the creation of food emulsions with improved physicochemical properties or stability.  相似文献   

17.
The influence of pH and iota-carrageenan concentration on the properties of beta-lactoglobulin (beta-Lg)-stabilized oil-in-water emulsions was investigated by measuring the particle charge, particle size distribution, and creaming stability. Emulsions containing droplets stabilized by beta-Lg were produced by homogenization, and then, iota-carrageenan was added. At pH 3, the droplet charge did not change for iota-carrageenan concentrations 相似文献   

18.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. Previous work has shown that an important factor in the oxidation of oil-in-water emulsions is surfactant properties that impact interactions between water-soluble prooxidants and lipids in the emulsion droplet. The purpose of this research was to study the impact of surfactant hydrophobic tail group size on lipid oxidation in oil-in-water emulsions stabilized by polyoxyethylene 10 lauryl ether (Brij-lauryl) or polyoxyethylene 10 stearyl ether (Brij-stearyl). The ability of iron to decompose cumene peroxide was similar in hexadecane emulsions stabilized by Brij-stearyl and Brij-lauryl. Oxidation of methyl linoleate in hexadecane emulsions containing cumene peroxide was greater in droplets stabilized by Brij-lauryl than in those stabilized by Brij-stearyl at pH 3 with no differences observed at pH 7.0. Oxidation of salmon oil was greater in emulsions stabilized by Brij-lauryl than in those stabilized by Brij-stearyl as determined by both lipid peroxides and headspace propanal. These results suggest that surfactant hydrophobic tail group size may play a minor role in lipid oxidation in oil-in-water emulsions.  相似文献   

19.
The influence of chelating agents (disodium ethylenediaminetetraacetate (EDTA) and sodium citrate) on the physicochemical properties of whey protein isolate (WPI)-stabilized oil-in-water emulsions containing calcium chloride was determined. The calcium-binding characteristics of EDTA and citrate at 30 degrees C were characterized in aqueous solutions (20 mM Tris buffer, pH 7.0) by isothermal titration calorimetry (ITC). EDTA and citrate both bound calcium ions in a 1:1 ratio, but EDTA had a much higher binding constant. Oil-in-water emulsions (pH 7.0) were prepared containing 6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 10 mM CaCl(2), and 0-40 mM chelating agent. The particle size, apparent viscosity, creaming stability, free calcium concentration, and particle surface potential of the emulsions were measured. The chelating agents reduced or prevented droplet aggregation in the emulsions. When they were present above a certain concentration (>3.5 mM EDTA or >5 mM citrate), droplet aggregation was prevented. The reduction of aggregation was indicated by decreases in particle size, shear-thinning behavior, apparent viscosity, and creaming. Emulsions containing chelating agents had lower free calcium concentrations and more negatively charged droplets, indicating that the chelating agents improved emulsion stability by binding calcium ions. EDTA could be used at lower concentrations than citrate because of its higher calcium ion binding constant.  相似文献   

20.
The influence of Ostwald ripening on the optical properties of hydrocarbon oil-in-water emulsions stabilized by sodium dodecyl sulfate was investigated. The droplet size, spectral reflectance, and tristimulus color coordinates (L, a, and b) of a series of n-hexadecane and n-octadecane oil-in-water emulsions were measured in the presence and absence of a water-soluble red dye (FD&C Red No. 40). The droplets grew more rapidly in the emulsion containing n-hexadecane than in the emulsion containing n-octadecane because of the higher solubility of n-hexadecane molecules in the aqueous phase. Ostwald ripening caused appreciable changes in n-hexadecane emulsion spectral reflectance and color L, a, and b values due to the growth of emulsion droplets. L, a, and b color values and spectral reflectances of n-octadecane emulsions did not significantly change during the course of the experiment. The results were explained in terms of Ostwald ripening theory and a previously described light scattering theory. The model enables emulsion manufacturers to predict color changes in oil-in-water emulsions that exhibit transcondensational ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号