首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
旨在优化商洛天麻多糖的提取工艺并分析其抗氧化活性。本研究以商洛市天麻为材料,通过正交试验对超声辅助热水浸提法提取天麻多糖的工艺进行优化,并测定其DPPH自由基和羟基自由基的清除能力,以分析其抗氧化活性。结果表明,超声波辅助热水浸提法提取天麻多糖的最佳工艺条件为提取温度65℃,提取时间45 min,料液比1:40 g/mL,该条件下商洛天麻多糖含量为32.83 mg/g。天麻多糖清除DPPH自由基及羟基自由基的能力随浓度的增大而升高,说明天麻多糖含量在一定范围内有良好的清除DPPH自由基及羟基自由基的效果。当浓度3.5 mg/mL时,天麻多糖对DPPH自由基清除率能达到40.52%,羟基自由基的清除率能达到36.52%。天麻多糖具有开发成抗氧化剂的潜力。  相似文献   

2.
采用热水浸提法、超声法及复合酶法提取南瓜多糖,并对3种方法进行比较。采用乙醇沉淀法得到南瓜粗多糖,比较3种方法所得粗多糖对羟基自由基(.OH)和超氧阴离子自由基(O2-.)的清除效果。结果表明,热水浸提法、超声法及复合酶法的提取率分别为14.8%,15.87%和20.13%,即酶法为最佳方法;复合酶法提取得到的多糖对羟基自由基(.OH)和超氧阴离子自由基(O2-.)的清除效果最好。  相似文献   

3.
以榛子壳为原料,进行榛子壳多糖提取工艺优化研究,探讨了采用热水浸提法提取榛子壳多糖工艺中不同蒸煮温度、蒸煮时间,以及不同料液比对多糖提取率的影响。通过正交试验,确定了以多糖提取率为优化指标的榛子壳多糖提取工艺为提取温度100℃,料液比1∶15,蒸煮时间1.5 h,通过DNS法检测计算多糖提取率为8.52%;并确定经超声波辅助提取优化后多糖的提取工艺为超声功率320 W,超声频率72 Hz,料液比1∶20,超声时间20 min,蒸煮时间2 h,蒸煮温度100℃。经优化后,通过DNS法检测计算提取率可达到16.88%。  相似文献   

4.
采用超声波辅助法提取火龙果果皮多糖,研究料液比、超声功率、超声时间对多糖提取率的影响,采用响应曲面法优化超声波辅助提取火龙果果皮多糖工艺条件,并对火龙果果皮多糖的体外抗氧化活性进行了研究。结果表明,在料液比(g∶m L)1∶8.11,超声功率101 W,超声时间26 min的条件下,火龙果果皮多糖的提取率为13.88%。同时,火龙果果皮多糖能有效清除ABTS(2,2'-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐,ABTS)自由基,对菜籽油也具有显著抗氧化作用。  相似文献   

5.
为了优化对梅花鹿茸中多糖的提取条件,获得更高的得率,将传统的超声波提取法、热水浸提法以及碱提法相结合,采用Box-Behnken设计,对影响鹿茸多糖提取效果的液料比、超声提取时间、热水浸提时间以及碱提时间4个因素进行优化。结果表明,鹿茸多糖最佳提取工艺条件为液料比42∶1,超声辅助提取时间21 min,热水浸提时间2 h,碱提取时间2.3 h,在此条件下鹿茸多糖得率为1.053 9%。  相似文献   

6.
为了研究桑黄菌丝体中桑黄多糖的提取工艺及其体外抗氧化活性,利用热水浸提法,在单因素实验结果的基础上,采用多因素正交试验对桑黄菌丝体中桑黄多糖的提取工艺进行优化,并通过检测桑黄多糖清除ABTS+.和DPPH.自由基的能力来初步评价其体外抗氧化活性。结果表明:桑黄多糖最佳提取工艺为提取时间2.5 h,提取温度60 ℃,提取次数3次,液料比为14倍,在该最佳提取条件下桑黄多糖得率为4.97%;体外抗氧化活性实验结果表明,桑黄多糖的ABTS+.和DPPH.自由基清除能力有良好的剂量-效应关系,对ABTS+.和DPPH.的最高清除率分别为73.54%和88.83%。表明优化的桑黄液体发酵菌丝体中桑黄多糖提取工艺合理、可行,桑黄多糖有较强的体外抗氧化活性,可用于功能性食品和药剂的开发利用。  相似文献   

7.
微波辅助提取玉米须黄酮工艺研究   总被引:6,自引:0,他引:6  
采用单因素分析结合正交试验的方法,研究了微波辅助提取玉米须黄酮的工艺条件,并与加热浸提法进行了比较。结果表明,微波辅助提取玉米须黄酮的最佳工艺条件为:以体积分数50%的乙醇为提取剂,料液比(g︰mL)1∶50,提取温度70℃,提取时间8 min。此条件下,黄酮提取率可达1.13 %。与加热浸提法相比,提取时间缩短约9/10,提取率提高约11 %。  相似文献   

8.
为了研究橄榄多糖的微波辅助提取工艺,以橄榄果实为原料,采用微波前处理-热水浸提新工艺提取橄榄多糖,通过单因素试验和正交试验研究了微波功率、微波时间、料液比、热水浸提温度、热水浸提时间和浸提次数对橄榄多糖得率的影响。结果表明,影响多糖得率的主要影响因素及次序为热水浸提时间、热水浸提温度、微波时间、微波功率,在所考察试验范围内,橄榄多糖的最佳提取工艺条件为:微波时间60s、微波功率480W、热水浸提温度100℃、热水浸提时间3.5h,在此条件下得到的橄榄多糖得率为9.38%。实验结果可为微波辅助提取橄榄多糖提供实验依据。  相似文献   

9.
北虫草多糖提取工艺优化及抗氧化作用研究   总被引:1,自引:1,他引:0  
为了研究北虫草多糖的最佳提取工艺以及抗氧化功能,以北虫草(Cordycepsmilitaris)子实体为试验材料,通过正交L9(34)试验探讨提取北虫草多糖的最佳工艺,并对北虫草多糖总还原力、DPPH清除能力、抑菌能力等进行了测定。结果表明,超声波辅助热水浸提法提取北虫草多糖的最佳工艺参数为:超声功率105W、超声时间40min、料水比1:25、热水浸提时间40min、热水浸提温度70℃,在此条件下的多糖得率为2.6602%。当北虫草浓度为2.4mg/mL时,还原力最高;0.45mg/mL时,DPPH清除能力最强。  相似文献   

10.
杨树菇多糖提取工艺的研究   总被引:1,自引:0,他引:1  
采用热水浸提法结合微波辅助法提取杨树菇中的多糖,对影响提取杨树菇多糖的工艺参数进行单因素试验,并在此基础上设计正交试验,提出提取杨树菇多糖的最佳工艺条件为:浸提温度为50℃,浸提时间为45min,浸提次数为3次,加水量为40mL。  相似文献   

11.
橄榄多糖提取工艺研究   总被引:2,自引:2,他引:0  
为优化橄榄多糖的热水浸提工艺条件。以橄榄为原料,采用热水浸提法提取橄榄中的多糖,研究不同因素(料液比、浸提温度、提取时间、提取次数)对橄榄多糖提取率的影响,在单因素试验的基础上,选择3个主要影响因素(料液比、提取温度、提取时间)进行正交试验,并通过正交试验确定橄榄多糖的最佳提取工艺条件。结果表明,热水浸提法提取橄榄多糖的最佳工艺条件为:料液比1:8,温度100℃,时间3.5 h,浸提2次,多糖提取率可达7.10%。实验结果为确定橄榄多糖的热水浸提工艺提供了实验依据。  相似文献   

12.
以芒果皮渣为原料,采用热水浸提法,在单因素试验的基础上,通过响应面法优化芒果皮渣多糖的提取工艺,同时分析芒果皮渣多糖的最佳沉淀条件,并利用清除ABTS+·、DPPH·和·OH能力评价其体外抗氧化活性。结果表明,芒果皮渣多糖的最佳提取及醇沉工艺条件为:浸提温度98℃,浸提时间4 h,料液比1∶40(g/mL),在此条件下芒果皮渣多糖提取率为9.29%。芒果皮渣多糖最佳醇沉工艺为:浸提次数3次,浸提液浓缩5倍,4倍体积95%乙醇醇沉6 h。体外抗氧化试验表明,芒果皮渣多糖对ABTS+·、DPPH·和·OH均有一定的清除效果,随着芒果皮渣多糖质量浓度的增加清除能力逐渐增强,当多糖浓度为1.0 mg/mL时,其对ABTS+·、DPPH·和·OH的清除率分别达到42.58%、92.37%和41.59%,此时还原力为1.49。  相似文献   

13.
为优化益智总黄酮超声辅助提取工艺,并评价其抗氧化活性,以益智总黄酮提取率为指标,在单因素试验考察甲醇浓度、超声时间及液料比对总黄酮提取率影响的基础上,采用响应面试验设计优化了超声辅助提取工艺,利用DPPH自由基法、ABTS自由基法和FRAP法评价了其体外抗氧化活性,并分析了益智总黄酮含量与其抗氧化活性的相关性.结果表明,益智总黄酮超声辅助提取最佳工艺为:甲醇浓度100%,超声时间20 min,液料比25:1(mL/g),该条件下益智总黄酮提取率达0.757%.益智体外具有较强的抗氧化活性,其清除DPPH自由基、ABTS自由基的IC50值分别在0.851~3.188 mg/mL(相当于生药)、0.642~1.789 mg/mL(相当于生药)之间,FRAP值在0.029~0.111 mmol/L之间,总黄酮含量与清除DPPH自由基的IC50值和总抗氧化能力FRAP值呈显著相关(P<0.05),但与清除ABTS自由基IC50值相关性不显著.  相似文献   

14.
为了更好地开发利用福建佛手,以福建佛手为原料,采用传统热水浸提法研究了料液比、提取温度、提取时间对福建佛手粗多糖提取率的影响。通过正交试验法确定了建佛手粗多糖的最优提取工艺条件为料液比1∶80,提取温度80℃,提取时间180 min,在此条件下粗多糖的提取率可达4.45%。  相似文献   

15.
植物多糖的提取技术与功能研究进展   总被引:1,自引:0,他引:1  
多糖几乎存在于所有的动物、植物及微生物体内而参与机体生理代谢。植物多糖具有降血糖、降血脂、预防和治疗糖尿病、抗肿瘤、抗氧化等生理功能,可作为药物用于临床治疗,其提取方法主要有超滤法、微波辅助提取法、超微粉碎法、超临界流体萃取法等。  相似文献   

16.
以野木瓜为原料,通过微波法、超声辅助碱法、双酶法、酸碱法、超声辅助酶法5种方法提取水溶性膳食纤维(SDF)和水不溶性膳食纤维(IDF),根据提取样品的色泽对显色反应影响,选用微波法、双酶法、超声辅助酶法提取的SDF和IDF作为抗氧化特性研究对象,并测定其还原能力、羟自由基和DPPH自由基清除能力,以研究其抗氧化特性。综合提取率、羟自由基清除率、DPPH自由基清除率及还原能力,确定微波法为野木瓜SDF和IDF提取工艺最适宜的方法。  相似文献   

17.
以金银花为原料,通过单因素试验和响应面耦合遗传算法优化超声-酶辅助提取金银花绿原酸的工艺;同时探究最优提取工艺下获得的金银花绿原酸提取物对ABTS+自由基和羟基自由基清除能力的影响.结果表明,超声-酶辅助提取金银花绿原酸最优的工艺参数为:超声功率157 W,提取时间30 min,提取温度34℃,果胶酶添加量0.20%,乙醇体积分数61%,在此条件下所得绿原酸提取率为12.85%±0.37%.体外抗氧化活性表明:金银花绿原酸提取物具有较强的抗氧化活性,其中对ABTS+自由基和羟基自由基清除率的IC50分别为(6.18±0.07)mg/mL和(4.75±0.06)mg/mL.研究结果为金银花绿原酸提取提供一种可行的方法.  相似文献   

18.
采用热水浸提法分别在不同提取温度(40,60,80,100℃)下提取得到4种蛤蒌叶粗多糖,并测定其总多酚和蛋白质的含量。然后测定4种粗多糖对羟基自由基、DPPH自由基和超氧阴离子自由基的清除能力,以及粗多糖的还原能力来评价提取温度对其抗氧化活性的影响。结果显示,蛤蒌叶粗多糖中总多酚和蛋白质的含量随着提取温度的升高而下降。提取温度在40~100℃内,随着提取温度的升高,蛤蒌叶粗多糖对羟基自由基、DPPH自由基和超氧阴离子自由基的清除能力均呈下降趋势,而提取温度对其还原能力的影响没有明显差别。结果表明,提取温度对于蛤篓叶粗多糖的抗氧化活性有显著影响,主要是通过影响粗多糖中的总多酚和蛋白质含量来影响其抗氧化活性。  相似文献   

19.
香菇多糖提取工艺优化及其抗氧化与抑菌功效研究   总被引:2,自引:1,他引:1  
为提高香菇多糖提取效率、研究其抗氧化性和抑菌效果,采用超声波辅助热水浸提法,设计L9(33)正交试验在料液比、浸提温度和超声时间三个因素优化香菇多糖提取工艺,检测其提取率,抗氧化性和抑菌效果。结果表明:提取多糖效率最佳工艺为料液比1:40(g:mL),浸提温度90℃,超声时间40min,最高提取率达到6.47%。抑菌功效最佳工艺为料液比1:40(g:mL),浸提温度80℃,超声时间20min,大肠杆菌最大抑菌圈直径为9.95±0.86mm,枯草芽孢杆菌最大抑菌圈直径为8.73±0.57mm。清除羟基最佳工艺料液比1:30(g:mL),浸提温度90℃,超声时间30min,清除率为22.04%。还原力最佳工艺料液比1:30(g:mL),浸提温度90℃,超声时间40min,其还原力最大。在提取和抗氧化试验中的三个因素影响程度相同即料液比>浸提温度>超声时间。提取条件进行优化后,提高了提取效率,试验结果还表明,香菇多糖有一定的抑菌和抗氧化性功效。  相似文献   

20.
微波辅助提取紫苏多糖及保肝降酶活性的研究   总被引:1,自引:1,他引:0  
为了探索食材紫苏籽中多糖的提取方法和保肝降酶作用,将紫苏籽粉碎和石油醚脱脂处理后,研究液料比、微波功率和微波辅助提取时间3种因素对多糖提取率的影响,并探索紫苏多糖的保肝降酶作用。结果表明:最佳提取工艺为:液料比25:1、微波提取功率480 W,微波辅助提取时间3 min,提取率达到9.06%;通过降酶活性检测和组织形态观察,确定了紫苏多糖对急性肝损伤小鼠血清中ALT活性和AST活性显著降低作用(P<0.01),紫苏多糖剂量组小鼠的肝脏外观颜色更鲜艳并富有弹力,肝脏表面的斑点状坏死灶减轻,肝脏系数和脾脏系数也有所降低(P<0.05)。由此说明,紫苏多糖对于急性肝损伤小鼠具有保肝降酶作用,这一结论为保肝降酶药物的研究与开发提供了重要的借鉴依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号