首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
<正> 本文主要分析物料温度与淀粉糊化率的关系,以及蒸汽压力与物料粒度对颗粒机制粒性能、颗粒质量的影响。一、物料湿度与淀粉糊化率的关系人们日常对淀粉糊化这一概念缺乏正确的理解。Seib(1971)将淀粉糊化解释为“淀粉晶态区天然次生粘接力不可逆的破坏”。Hoseney(1986)将淀粉糊化概括为“淀粉双(光)折射作用的丧失”。 stevens(1987)通过玉米粉制粒对淀粉糊化现象做了进一步试验研究,他对完整颗粒及颗粒外层(从颗粒外表刮取2mm厚的粉料)的糊化程度做了比较。表1是他从模外取样并立即通过差式扫瞄热量计(differential scanner calorimeter)所测的颗粒糊化结果。由表1中数据可知,调质粉料的  相似文献   

2.
洪兰华 《广东饲料》2001,10(4):25-26
颗粒饲料的制粒前调质是在混合粉料中添加蒸汽、并将粉料与蒸汽进行搅拌混合,从而使之加温加湿的过程。调质时蒸汽被加入粉料中,粉料的温度和湿度升高,粉料中的淀粉随之糊化,粉料变成 "可塑”性好的粘状物,因而在制粒时就容易粘结形成颗粒,从而改善制粒状况,有效地提高制粒机的产量,并使饲料成品颗粒变得更加结实光滑。同时,由于温度升高,可以杀死饲料原料内的部分有害细菌。随着饲料工业和养殖业的日益发展,用户对饲料产品的质量要求越来越高,不但要求饲料产品要有良好的内在品质,还要求有良好的外观。这样一来,制粒前的调质…  相似文献   

3.
<正>为保证颗粒饲料质量,降低制粒工序能耗,通过不同调质温度对颗粒饲料质量及制粒生产率影响的试验,揭示颗粒饲料生产中较适宜的调质温度,为企业生产提供参考。采用四种调质温度:55℃、60℃、65℃、70℃。粉碎机所用筛片的孔径2 mm,制粒机压缩比为10,模孔直径为4.5mm,调质时间为10s,蒸汽量为物料量的5%,蒸汽压力0.3 MPa。对乳猪颗粒饲料粉状半成品进行试验,试验表明:调质温度升高,颗粒饲料的粉化率显著下降(P0.05),硬度、成形率显著提高(P0.05),制粒生产率显著提高(P0.05),  相似文献   

4.
米糠制粒     
米糠制粒后,不仅保鲜效果好,密度、粉化率、自流角等与饲料加工密切相关的物理性质也大幅度改良。研究结果表明,采用入模温度85℃,压模孔径Φ25mm进行制粒,所得米糠颗粒除自流角略差于膨化米糠外,其余指标均优于膨化米糠。  相似文献   

5.
朱国法 《饲料工业》2002,23(11):52-52
1原料的理化性质不同的原料组成的饲料制粒性能差异较大。通常玉米、豆粕含量较高的饲料(如小鸡料)制粒性能较好,粉料回流量少,成品成形率大都在95%上;而大糠、4号粉含量较高的饲料(如通用料)则刚好相反,成品成形率90%左右,且经常堵塞环模,造成停产。因此在配方设计中,在不提高成本的前提下应尽可能少用制粒性能差的原料。1.1粉含量较高的原料,在较高的温度和水分时调质,可促使淀粉糊化,制粒时可起润滑作用,提高制粒产量,同时颗粒冷却后粘结性好,粉化率低。1.2天然蛋白质的容量大,受热后变性,其可塑性与粘…  相似文献   

6.
本论文研究了饲料加工的两个关键参数(调质温度和时间)对育肥猪颗粒饲料淀粉糊化度和维生素沉积的影响。日粮配方为含30%干酒糟及其可溶物的玉米-豆粕型基础日粮。整个试验中配方保持不变。本试验采用2×3双因子设计,调质温度分别为77℃和88℃,调质时间分别15秒、30秒和60秒。此外,本试验还设置一个对照组,对照组饲料不采用调质制粒工艺,而是采用粉料饲喂。因此,本试验共有7个处理组。采集调质后制粒前(热干粉)、制粒后冷却前(热制粒)、以及制粒冷却后(冷制粒)的样品,并分析这三种样品的总淀粉率、淀粉糊化  相似文献   

7.
<正> 饲料中各种淀粉的最佳糊化温度是不同的,玉米的糊化温度为62~72℃。又据资料介绍,淀粉糊化的最佳含水率为35%。为了更好地了解物料在不同制粒工艺时淀粉的糊化和压粒的关系,我们进行了加水压粒、加蒸汽压粒和二次制粒对比试验。试验用环模式颗粒机,压模孔径4毫米,调质器长1.05米,物料在调质器中的滞留时间为4秒,蒸汽压力3公斤/厘米~2。试验结果见下表。  相似文献   

8.
饲料原料特性对制粒品质的影响   总被引:2,自引:0,他引:2  
饲料原料特性对制粒品质的影响鲍英华王大瑞随着颗粒料生产和应用的迅速发展,颗粒料的生产品质也显得尤为重要。而生产品质表现在外观指标上主要为硬度与粉化率,影响之因素包括原料特性、设备情况、调质温度、调质压力、压模与压辊质量等。本文就饲料原料特性对颗粒料质...  相似文献   

9.
杨平 《江西饲料》2000,(6):16-17
随着饲料行业市场竞争日趋激烈,许多饲料厂特别是生产特种水产饵料厂为适应市场需求,更多地需要生产Φ1.5~2.5mm的颗粒料。但在生产小孔径颗粒饲料过程中,经常会出现产量低下,环模堵塞不出料等问题,因为疏通小孔径环模难度较大,令诸多饲料生产厂家感到头疼。笔者根据多年实践经验,就谈谈这个问题。1原料因素  不同配方的原料直接影响制粒后的质量。淀粉含量较高的物料容易被蒸气糊化,这些物料经过调质后,具有一定的粘性,有利于颗粒料的成形。对粗纤维含量高的物料,添加一定量的油脂,在制粒过程中,可以减少物料与环模之间…  相似文献   

10.
制粒前调度温度和水分的设计与处理   总被引:1,自引:0,他引:1  
调质过程一般从混合机开始至制粒机内结束,分两步完成:①向混合机内水分过低的配合粉料中均匀添加适量水分,添加油脂,完成初步润料过程;②根据需要在给料器和调质器内添加糖蜜和蒸汽,使被调质的粉状料达到: a、进入制粒前水分适合约 16%~ 20%; b、加热使其达到预期的温度或有利于淀粉糊化而又不粘模的温度。这两个步骤是相互关联的,只有确定了第二步的各项数据,才能计算出第一步应添加多少水分,第二步的各项数据比较多,由最终的 a、 b值确定蒸汽的压力、蒸汽量,确定以上数值时需考虑环境温度即料初始温度、粉料水分、蒸汽…  相似文献   

11.
影响制粒机生产率的原因分析   总被引:3,自引:0,他引:3  
杨平 《中国饲料》2001,1(6):26-27
配合饲料生产过程中,制粒工序至关重要。现就影响制粒机生产率的主要原因分析如下。1 原料不同配方原料直接影响制粒的效果。淀粉含量较高的物料易被蒸汽糊化,这些原料经过调质后具有一定的粘性,有利于颗粒料成形。粗纤维含量高的原料,添加一定量的油脂(一般为1 %左右),在制粒时可以减少物料与环模之间的摩擦力,有利于物料通过环模,且成形后颗粒外观较光滑。粉碎原料粒度越细,原料表面积越大,物料吸收蒸汽中水分越快,有利于调质,易制粒成形。从制粒角度来讲,粉碎细,制粒强度高,但加蒸汽多,稍不留意易堵机,粉碎电耗也较高;…  相似文献   

12.
加工工艺对饲料营养价值和动物生产性能的影响(续)   总被引:2,自引:1,他引:1  
然而在特定温度下,调质时间是影响糊化程度、制粒质量的主要因素。调质时间越短,糊化率越低,颗粒粉化率高,硬度小,同时营养物质消化率下降。调质时间从5s增至15s,每增加1s,糊化率增加3.5%,粉化率下降0.1%,硬度增加0.067kg。因此厂家可根据不同条件和质量要求,调节温度和调质时间,生产满意的产品。 3.2.3 制粒对营养物质损失的影响 制粒温度、湿度、压力和摩擦等都可影响饲料的营养成分,其中受影响最大的是维生素。据研究发现:提高制粒温度或延长制粒工艺时间可增强氧化还原反应,从而造成维生素损失:①VC、VK和VE稳定性最差;制粒时间1 min,温度从71℃增至110℃,损失率为30%~45%,对温度最敏感;②最稳定的维生素是胆碱、VBi_(12)、VE醋酸酯和微胶囊VD_3,制粒时间为1 min,制粒温度从71℃提高至110℃,维生素损失分别为3%、4%、7%,损失率很低;③大多数维生素如微胶囊维生素A、VD_3、盐酸  相似文献   

13.
为获得玉米-豆粕型肉鸡全价颗粒饲料的适宜调质温度,将玉米-豆粕型肉鸡全价粉料分别在70、80和90℃三个温度进行调质后制成颗粒饲料,分别测定三种调质温度下的颗粒饲料淀粉糊化度、颗粒耐久性和还原糖含量以评价调质温度对颗粒饲料加工质量的影响。结果表明,颗粒饲料淀粉糊化度和颗粒耐久性均随调质温度的升高而升高,还原糖的含量则随调质温度的升高而显著降低(P<0.01),玉米-豆粕型肉鸡全价颗粒饲料的适宜调质温度为70~80℃。  相似文献   

14.
不同草粉添加比例对颗粒饲料加工质量的影响   总被引:2,自引:0,他引:2  
文章旨在研究不同草粉添加比例对颗粒饲料的硬度、容重、含粉率和粉化率的影响。以苜蓿和小黑麦草为粗饲料来源,分别设70:30,65:35和60:40三个精粗比水平,调质温度为(45±2)℃,采用孔径φ=5 mm,压缩比为1:6的环模制粒机压制颗粒,冷却后对指标进行测定。结果表明:随着草粉添加比例的增加,颗粒饲料的硬度、容重、粉化率和含粉率均降低,且3个精粗比水平压制的颗粒料的硬度、容重和粉化率均差异显著(P0.05)。草粉添加比例对颗粒饲料加工质量有显著影响(P0.05),生产中应根据草粉用量调整制粒工艺参数,以提高饲料产品的质量。  相似文献   

15.
饲料淀粉糊化的适宜加工工艺参数研究   总被引:12,自引:4,他引:8  
试验研究了实验及生产条件下影响淀粉糊化的重要工艺参数。试验1,采用三因素二次回归正交组合设计,研究玉米中淀粉糊化度与温度、时间、水分的关系。温度范围为60~120℃,时间为5~65min,水分为12.5%~50%。试验2,按调质条件进行随机试验,选择现行工业生产中蒸汽制粒工艺,固定蒸汽压力(0.5MPa)、调质时间(10s),研究调质条件对产品淀粉糊化度的影响。结果表明:温度、水分、时间具有不同程度地影响淀粉糊化的作用,水分、时间极显著促进淀粉糊化。生产及实验条件下,水分均是明显决定产品糊化度的第一限制性工艺参数。实验条件下,水分大于31.25%,淀粉糊化度迅速增加。适宜淀粉糊化度的优化工艺参数为温度88.6~95.8℃,时间26.24~33.26min,水分.46.83%~48.1%。生产条件下,提高物料水分,将显著增加淀粉糊化度。  相似文献   

16.
为提高饲料颗粒成型率和环模制粒机的制粒效率,结合生产实际,设计了三因素三水平正交试验,探究环模模孔长径比、有效高度和转速对饲料颗粒成型率的影响。结果表明:环模结构中模孔长径比对饲料颗粒成型率影响最大,其次是环模转速,环模高度对饲料颗粒成型率的影响效果最小;饲料颗粒成型率最高的优化组合方案为模孔长径比11、环模转速330 r/min、环模高度130 mm。探究结果可为后续改进制粒机结构、提高饲料颗粒质量、减少制粒机关键部件磨损、降低加工成本提供新视角和新方法。  相似文献   

17.
试验旨在研究不同调质温度对猪颗粒饲料质量、猪生长性能及养分消化率的影响。设计70、75、80℃和85℃等4个调质温度水平生产猪颗粒饲料,测定不同调质温度下颗粒饲料的含粉率、粉化率和淀粉糊化度;再选取70日龄体重接近的肥育猪60头,随机分为4个处理,分别饲喂70、75、80、85℃调质的颗粒饲料,饲养试验60 d后采用全收粪法进行消化试验。结果表明:各处理间颗粒饲料含粉率、钙磷消化率、平均日采食量均差异不显著(P>0.05);各处理间颗粒饲料粉化率、淀粉糊化度均差异极显著(P<0.01)。80℃和85℃处理的干物质、粗蛋白消化率极显著高于70℃和75℃处理(P<0.01),75℃和80℃处理粗脂肪消化率极显著高于70℃和85℃处理(P<0.01)。70℃和85℃处理的料重比极显著高于80℃处理,且80℃处理平均日增重最大(P<0.01)。说明合适的调质温度可以提高饲料的质量和饲喂效果,最适温度为80℃。  相似文献   

18.
不同加工工段对淀粉糊化度的影响   总被引:8,自引:2,他引:6  
通过对淀粉与淀粉糊化度的分析以及对饲料中淀粉糊化度的测定来研究不同加工工段对饲料淀粉糊化度的影响。研究了对一级调质—制粒工艺、二级调质—制粒工艺对淀粉糊化度的影响,测定分析了膨化对淀粉糊化度的影响。得出了在加工过程中采用二级调质—制粒工艺和膨化工艺能得到较好的淀粉糊化度的结论。  相似文献   

19.
冷水制粒机     
<正> 桂林地区联合收割机厂试制成功一种不需使用蒸气的9ZLj—500型环模式制粒机。这种制粒机,采用冷水制粒工艺,只要控制好粉料的含水率,即可正常进行生产。采用冷水制粒工艺,机内温度比采用蒸气的低,一般在90℃以下,饲料中的蛋白质、维生素等有机物质可免受破坏,能保持饲料原有的香味,适口性好。生产成本也相应下降,蒸气制粒的成本约为28元/吨,而冷水制粒只需16元/吨。在使用冷水制粒机时,必须控制粉料的含水率,经过大量试验证明,含水率必须控制在13%~18%。如果粉状饲料含水率<13%,机内不能产生足够的蒸气,饲料中的淀粉、粘结剂糊化度不够,故颗粒成形率低,能量消耗大,环模与压辊轮的磨损大。同时因为饲料挤压产生的热量大,淀粉易焦化,  相似文献   

20.
饲料制粒新技术   总被引:9,自引:0,他引:9  
制粒就是把全价混合料或单一原料(米糠、牧草等)经挤压作用而成型的过程,它有硬颗粒和软颗粒之分,硬颗粒是指调质水分小于20%,成品水分小于12.5%;软颗粒指调质水平在20%~30%,温度低于60℃。1设备1.1调质器所谓调质就是对饲料进行水热处理,使其淀粉糊化,蛋白质变性,物料软化,提高压制颗粒的质量和效果,并改善饲料的适口性,提高其消化吸收率。1.1.1调质的方式对饲料调质一般是通过引入蒸汽而实现。最常见的办法是直接通入蒸汽进行水热处理,其次为通过间接蒸汽进行加热。另有少数同时加入蒸汽和糖蜜等…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号