首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Butylated hydroxyanisole (BHA) is a phenolic antioxidant that is used as a food additive, particularly in fats and oils, and it is also authorized as a feed additive in the European Union for all animal species with a maximum concentration of 150 mg kg?1 feed (alone or in combination with ethoxyquin and/or butylated hydroxytoluene). Information on the BHA levels in food of animal origin is scarce, as is literature on the transfer of BHA from feed to animal products. Consequently, the current feeding trial was conducted under realistic rearing conditions to determine the retention of BHA in Atlantic salmon (Salmo salar) fillets. Four different concentrations of BHA in feed were tested (0, 48.5, 92.5 and 225 mg BHA kg?1 feed), and fish were sampled after 4, 8 and 12 weeks dietary exposure, and after a 2‐week starvation period, which is representative of commercial salmon farming in Norway. The levels of BHA in salmon fillets were fairly dose dependent during the feeding period. A steady state in fillet residues was reached after 4 weeks of administration of BHA. After the 2‐week withdrawal period, BHA was not detectable (<7 μg kg?1) in either fish fillets or livers.  相似文献   

2.
Triplicate groups of one hundred Tra catfish (8 g?±?0.2) were fed seven test diets containing increasing levels of AFB1 (0, 50, 100, 250, 500, and 1000 μg AFB1 kg?1). Additionally Mycofix® Secure was added at 1.5% to one diet containing 500 μg AFB1 kg?1. Results showed that Tra catfish are sensitive to AFB1. Reduction in weight gain (P?<?0.05) was observed for fish fed 50 μg AFB1 kg?1 and declined further with increasing levels of AFB1 in the diets. Fish fed diets contaminated with 500 and 1000 μg AFB1 kg?1 showed increased (P?>?0.05) hepatosomatic index (HIS), while an increase in adipose somatic index (ASI) was observed in fish fed 50 μg AFB1 kg?1 and above when compared to the control and Mycofix® diets. After 12 weeks, blood serum analysis revealed higher alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in fish fed the 50, 100, and 250 μg AFB1 kg?1 suggesting occurrence of liver damage. Disease resistance of fish exposed to Edwardsiella ictaluri was also compromised by the presence of AFB1 in the feed and was directly related to the contamination level. Seven days after Edwardsiella ictaluri exposure, survival rates were 50, 41.7, 31.7, and 8.3% for fish fed control, 50, 100, and 250 μg AFB1 kg?1, respectively. This trial shows that AFB1 at a level of 50 μg AFB1 kg?1 and above can affect fish performance and disease resistance. Application of an effective mycotoxin management in the feed seems to be useful to prevent the negative effects of AFB1.  相似文献   

3.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

4.
In the present study, konjac mannanoligosaccharide (KMOS) was evaluated as a prebiotic in yellow catfish. The fish were fed with diets containing KMOS in four concentrations: 0 g kg?1 (C), 1.0 g kg?1 (KM1), 2.0 g kg?1 (KM2), and 3.0 g kg?1 (KM3) for 49 days, respectively. Another group fed with diets containing 3.0 g kg?1 yeast cell wall mannanoligosaccharide (MOS) (M3) was set as positive control. The results indicated that fish receiving the diets supplemented with KMOS or MOS showed higher relative gain rate (RGR), specific growth rate (SGR), and lower feed conversion ratio (FCR) with significantly differences (P < 0.05) than those fed with the basal diets. Moreover, fish receiving the diets with 2.0 g kg?1 KMOS inclusion showed higher RGR, SGR, and lower FCR (P < 0.05) than that feeding the diets supplemented with 3.0 g kg?1 MOS. The quantities of Bifidobacterium spp. were significantly increased (P < 0.05). Meanwhile, Escherichia coli and Aeromonas spp. were significantly reduced (P < 0.05) in the fish-feeding diets with 2.0 g kg?1 KMOS supplement. Compared with the control group, the significantly enhancement of protease and amylase activity (P < 0.05) in intestine and pancreas was observed in fish fed with diets containing KMOS or MOS. Collectively, an optimum level of KMOS inclusion in diets could modulate intestinal microflora, induce digestive enzyme activity, and improve the growth performance of yellow catfish significantly.  相似文献   

5.
A study was designed to investigate the possible positive prebiotic effects of mannan oligosaccharides (MOS) on growth and reduction of anxiety behaviors in zebrafish (Danio rerio). The experimental diets were supplemented with 0, 2, 4, 6, or 8 g MOS kg?1 and were fed to juvenile fish (0.47 ± 0.017 g) in triplicates for six weeks. Significant differences were found in the final body weight, body weight intake, percent body weight intake, and specific growth rate among treatments. The regression analyses showed that the optimum MOS level was 4–4.1 g MOS kg?1 diet. Fish fed 4 g MOS kg?1 feed showed higher survival than the other treatments. Also, using the novel tank test, fish fed with 4 g MOS kg?1 diet showed lower anxiety by swimming in the upper portion of the tank. The other behavior parameters remained unaffected by the prebiotic. The results indicated the beneficial effect of the prebiotic MOS on growth and partly on welfare of zebrafish juveniles.  相似文献   

6.
Economical, nutritious diets for hybrid striped bass (HSTB) are required for the continued expansion and sustainability of this industry. Turkey meal (TM) is a by‐product of the US turkey industry and is a potentially‐valuable local, alternative protein source for use in aquaculture diets because of its excellent nutritional composition and quality. TM may substitute for more expensive fish meal (FM)‐based diets; however, there are no published data with regard to using this ingredient in sunshine bass diets. Therefore, a 16‐week feeding trial was conducted with juvenile (36 g) sunshine bass (Morone chrysops × Morone saxatilis) to evaluate growth, feed conversion and body composition when fed diets with decreasing levels of FM (300, 200, 100 and 0 g kg?1) and increasing levels of turkey meal (0, 97, 175 and 264 g kg?1). Four practical diets were formulated to contain 400 g kg?1 protein and similar energy levels. Twenty fish were stocked into each of the 12, 1200‐L circular tanks and were fed twice daily ad libitum. At the conclusion of the feeding trial, there were no significant (P > 0.05) differences in final mean weight, percentage weight gain, specific growth rate and feed conversion ratio among treatments, which averaged 363.7 g, 904.3%, 2.02% day?1 and 1.73, respectively. Percentage survival of fish fed diet 4 (0 g kg?1 FM and 264 g kg?1 TM) was significantly (P > 0.05) lower (survival = 88.3%) than fish fed diet 3 (100 g kg?1 FM and 175 g kg?1 TM; survival = 95%), but not different from fish fed diet 1 (survival = 92.5%) and fish fed diet 2 (survival = 93.3%). Fillet weight and amount of abdominal fat were not significantly different among all treatments and averaged 258 and 58 g kg?1, respectively. Fish fed diet 1 (300 g kg?1 FM, 0 g kg?1 TM) and diet 2 (200 g kg?1 FM and 970 g kg?1 TM) had a significantly (P < 0.05) lower hepatosomatic index (2.83 and 3.01, respectively) than fish fed diet 4 (3.33), but not different (P > 0.05) compared to fish fed diet 3 (3.14). Lipid in the fillet of fish fed diet 2 (197 g kg?1) was significantly (P < 0.05) higher than fish fed all other diets; and the percentage lipid in the fillet of fish fed diet 1 (126 g kg?1) was significantly lower than fish fed diets 2 and 4, but not different (P >0.05) compared to fish fed diet 3. Fillet moisture, protein and ash were similar among fish fed all diets and averaged 748, 798 g kg?1 and 51.0 g kg?1 (dry‐matter basis), respectively. The amino acid composition of fillets was similar among all treatments with a few slight significant differences. Results from the present study indicate that tank‐grown sunshine bass can be fed a diet containing 264 g kg?1 TM with 0 g kg?1 FM, compared to diets containing up to 300 g kg?1 FM, without adverse effects on weight gain, growth rate, feed conversion and body composition. Further research should be conducted using lower‐protein diets to determine minimum protein level for tank‐grown sunshine bass.  相似文献   

7.
The effect of graded levels of dietary available phosphorus (AP) on large Nile tilapia (145.87 ± 9.51 g) performance, feed efficiency, body composition and mineral retention in vertebrae was evaluated. All male fish were distributed into three replicates in fiberglass aquaria (800 L each; 12 fish per tank) for 87 days and hand fed to pelletized diets three times a day until apparent satiation. Diets with approximately 302 g kg?1 of digestible protein and 15.2 kJ g?1 of digestible energy with graded levels of dibasic phosphate yield AP levels of 2.39, 4.17, 6.12 and 8.91 g kg?1. At the end of the trial, feed intake, hepatosomatic index, fillet yield, whole body moisture and crude protein of fish fed 2.39–8.91 g kg?1 of AP diets were not significantly different. The supplementation of 6.12 and 8.91 g kg?1 of AP resulted in significantly increased weight gain, whole body ash and calcium. Whole body crude lipids significantly decreased with increasing AP from 6.12 to 8.91 g kg?1. However, concentration of zinc in the vertebrae was not affected by dietary treatments. The magnesium contents of the fish vertebrae were lower in fish fed lower dietary AP level. No effects of the dietary AP on apparent digestibility coefficients of energy and nutrients were observed. The study indicated that the dietary AP level of at least 6.12 g kg?1 satisfies the needs for growth performance, body composition and bone mineralization of large Nile tilapia.  相似文献   

8.
Protein requirement of silver barb, Puntius gonionotus fingerlings   总被引:2,自引:0,他引:2  
Five iso‐energetic (15.05 MJ kg?1) semi‐purified diets with graded levels of crude protein, i.e. 200 (D‐1), 250 (D‐2), 300 (D‐3), 350 (D‐4) and 400 (D‐5) g kg?1 diet were fed to Puntius gonionotus fingerlings (average weight 0.88 ± 0.03 g) in triplicate groups (15 healthy fish per replicate) for a period of 90 days to determine the optimum protein requirement of the fish. Fifteen flow‐through cement tanks of 100‐L capacity with a flow rate of 0.5 L min?1 were used for rearing the fish. Specific growth rate (SGR), food conversion (food gain) ratio (FCR), nutrient digestibility and retention, digestive enzyme activity, RNA : DNA ratio and tissue composition were used as response parameters with respect to dietary protein levels and feed intake. The mean weight gains of fish after 90 days were 10.84 ± 0.27, 11.07 ± 0.12, 14.09 ± 0.20, 11.27 ± 0.12 and 10.91 ± 0.25 g for D‐1, D‐2, D‐3, D‐4 and D‐5, respectively. Maximum SGR (3.13 ± 0.02% per day), RNA : DNA ratio (10.09 ± 0.09), tissue protein content (160 ± 0.1 g kg?1 wet weight), protease activity (25.27 ± 0.47 μg of leucine liberated mg tissue per protein h?1 at 37 °C) and minimum FCR (1.60 ± 0.02) was found in D‐3 group fed with 300 g kg?1 protein level. All these parameters were negatively affected with the further increase in protein level in the diet. Digestibility of protein, lipid and energy was not affected because of variation in dietary protein levels and nitrogen intake of fish. Maximum energy retention (27.68 ± 0.12%) was recorded at 300 g kg?1 dietary crude protein fed group. However, using broken line regression analysis, the maximum growth was found to be at 317.7 g kg?1 dietary protein. Hence, it may be concluded that the protein requirement of P. gonionotus fingerling is 317.7 g kg?1 diet with a resultant P/E ratio of 21.1 g protein MJ?1.  相似文献   

9.
Optimum dietary protein levels of young Cichlasoma urophthalmus (Günther) of 0.3 g mean weight were determined at 28°C using two methods, a fixed feeding rate of 6% body weight per day and satiation feeding. In the fixed rate trials nine isoenergetic diets were formulated with protein levels ranging from 347 to 561 g kg?1 using brown fish meal (anchovy) as the only protein source. In the satiation feeding trials, ten diets were formulated based on brown fish meal (mackerel) ranging from 0 to 450g kg?1 protein. When fish were fed a fixed rate diet, the best absolute growth was obtained with diets between 435 and 560 g kg?1 protein. Broken-line analysis showed that, in terms of weight gain (%), the optimum protein level was about 453 g kg?1. When fish were fed to satiation, the best absolute growth was obtained with the 383 g kg?1 protein diet, and broken-line analysis suggested an optimum of about 325 g kg?1. The difference between the two results, using the two techniques, is very marked. The probable mechanism underlying these data is discussed.  相似文献   

10.
The study was conducted to evaluate the effect of dietary lipid levels on growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Five isonitrogenous (crude protein 420 g kg?1) practical diets containing 58, 87, 115, 144, and 173 g kg?1 crude lipid (named L58, L87, L115, L144, and L173, respectively) were fed to triplicate groups of 30 fish (mean initial weight 24 g) for 8 weeks. The results showed that the final body weight (58.68–78.81 g), specific growth rate (1.41–1.75 % day?1), and protein efficiency ratio (1.66–2.64) increased significantly with the increasing dietary lipid levels. Liver lipid contents (71.65–101.80 g kg?1) and crude lipid (52.10–83.63 g kg?1) of whole body increased with increasing dietary lipid levels and reached the highest values in fish of L173. Fish of L173 showed lower alkaline phosphatase (23.81 King Unit gprot?1) and catalase activities (4.44 U mgprot?1) but higher malondialdehyde content (0.69 nmol mgprot?1) in liver than the other groups. Higher alanine transaminase activity (8.20 U L?1), aspartate transaminase activity (63.65 U L?1), and triglyceride (0.29 mmol L?1) in serum were observed in fish of L173 compared to the other treatments. Fish of L144 showed higher superoxide dismutase activity and glutathione peroxidase activities in liver than that of fish fed diet L58. Fish fed diet L58 showed lower total cholesterol (3.61 mmol L?1), high-density lipoprotein cholesterol (1.39 mmol L?1), and low-density lipoprotein cholesterol (0.46 mmol L?1) in serum. These results suggested that juvenile snakehead (Channa argus × Channa maculata) achieved good growth performance with dietary lipid level 173 g kg?1. Diet with 143 g kg?1 lipid was more conductive to liver health. The appropriate dietary lipid supplementation needs to be determined in further studies.  相似文献   

11.
A 10-week feeding experiment was conducted to evaluate the effects of dietary protein to lipid ratios (P/L) on growth, intestinal digestive enzyme activities and body composition in juvenile rice field eel (Monopterus albus) (initial mean body weight of 65.76 ± 1.07 g, mean ± SEM). Nine test diets were formulated in a 3 × 3 factorial design to contain three protein levels (350, 400 and 450 g kg?1) for each of three lipid levels (40, 80 and 120 g kg?1), respectively. Each diet was randomly assigned to triplicate groups of 60 fish per net cage (1.5 × 2.0 × 1.5 m). Results showed the survival was above 96 % and was not affected by dietary treatments. Fish fed the diet with 450 g kg?1 protein and 40 g kg?1 lipid showed the best weight gain (WG) (103.95 %) and feed conversion ratio (1.60) (P < 0.05). WG, protein efficiency ratio and energy retention increased with the increasing in lipid at 350 g kg?1 protein level (P < 0.05). However, WG showed a little decline with increasing dietary lipid when fish fed the diets with 400 and 450 g kg?1 protein level, but no significant difference was observed (P < 0.05). Hepatosomatic index, visceralsomatic index and intestinal lipase activity increased with the increasing of dietary lipid level irrespective protein level. Intestinal trypsin activity increased with the increasing of dietary lipid level when fish fed the diets with 350 g kg?1 protein, but showed converse trend when fish fed the diets with 400 and 450 g kg?1 protein. Serum triglyceride, body lipid and energy were positively correlated with the dietary lipid. Results of the present study showed that the dietary protein/lipid ratio of 450/40 g kg?1 is considered optimum for rice field eel under culture conditions, and the increase in dietary lipid level has no efficient protein-sparing effect when fish fed the diets with 400 and 450 g kg?1 protein level.  相似文献   

12.
This study was conducted to investigate the effects of dietary chitosan on growth performance, hematological parameters, intestinal histology, stress resistance and body composition in the Caspian kutum (Rutilus frisii kutum, Kamenskii, 1901) fingerlings. Fish (1.7 ± 0.15 g) were fed diets containing chitosan at different levels (0, 0.25, 0.5, 1 and 2 g kg?1 diet) for a period of 60 days. Results showed that the feed conversion ratio significantly decreased in fish fed diet containing 1 g kg?1 of chitosan compared to the other groups (P < 0.05), but there were no significant differences between treatments in terms of specific growth rate and condition factor (P > 0.05). Leukocyte increased in fish fed diet containing 2 g kg?1 of chitosan compared to the other groups (P < 0.05). Lymphocytes, eosinophils and neutrophils did not significantly change among dietary treatments (P > 0.05). Also, the chitosan supplementation did not affect the whole-fish body composition (P > 0.05). Light microscopy demonstrated that the intestinal villus length increased in fish fed diet containing 1 g kg?1 of chitosan compared to control group (P < 0.05). While 11 and 13 ‰ salinity and 30 °C thermal stress had no effect, 1 g kg?1 of chitosan (P < 0.05) showed highest survival rate (70 %) in 34 °C thermal stress. The results showed that chitosan in the diet of the Caspian kutum fingerlings could improve feed conversion ratio, the nonspecific defense mechanisms and resistance to some of the environmental stresses.  相似文献   

13.
The effects of dietary selenium (Se) and vitamin E and their interaction in the nutrition of yellowtail kingfish, Seriola lalandi, were investigated. Six dietary treatments were prepared in a 3 × 2 factorial arrangement (not supplemented or supplemented with Se at 1 or 2 mg kg?1 × supplemented with vitamin E at 40 or 180 mg kg?1). A group of fish in triplicate were fed one of the six experimental diets for 6 weeks, and their growth performance, haematological and immune responses were measured. The results revealed positively interactive effects between dietary Se and vitamin E in yellowtail kingfish. Se significantly increased weight gain of fish fed diets low in vitamin E, but not high in vitamin E. Simultaneous supplementation of both micronutrients resulted in significant increase in serum bactericidal activity. There was no significant effect of Se or vitamin E on survival, feed intake, feed conversion ratio, haematocrit, white blood cell counts and fillet proximate composition. However, Se and vitamin E contents in fillets were significantly responsive to dietary Se and vitamin E, respectively. The supplemental level of Se at 2 mg kg?1 significantly increased red blood cell counts and haemoglobin concentrations, while lysozyme activity in skin mucus was significantly stimulated by vitamin E. The findings of Se and vitamin E supplementation in this study can be applied to improve growth and health indices of yellowtail kingfish.  相似文献   

14.
Corn gluten meal (CGM) has a high protein content and absence of antinutrients. However, it has high levels of carotenoids that can cause a yellowing of fish fillets and impair further commercialisation. Graded levels of CGM were incorporated in pacu diets to replace soybean meal (SM) protein. The experimental diets were formulated to be isonitrogenous (220 g kg?1 digestible protein) and isoenergetic (13.4 MJ kg?1 digestible energy) with 0, 25, 50, 75, and 100 % replacement of SM protein by CGM protein over a 60-day period. One hundred fish (32.79 ± 3.43 g) were randomly distributed in 20 experimental cages (70 L) placed within five (1000 L) aquaria with continuous water renewal. The experimental design was completely randomised with five treatments and four replicates. A quadratic effect (P < 0.05) was observed for fillet and carcass yields, feed conversion ratio, weight gain, and specific growth rate, with the optimum values for replacement of SM protein by CGM protein estimated as 21.95, 29.13, 30.94, 37.71, and 38.75 %, respectively. There were no differences (P > 0.05) for blood parameters, proximal composition, water-holding capacity, pH, lipid oxidation, and a* value of fillets. The L* and b* values of fillets showed differences (P < 0.05). Replacement between 21.95 and 38.75 % of SM protein by CGM protein (5.37 and 9.48 % of inclusion in the diet) improves the growth performance and body yield of pacu juveniles without altering blood parameters or affecting the fillet quality.  相似文献   

15.
Female Catla catla brood fish were reared in 12 ponds (0.03–0.05 ha) and fed daily once in the morning at 30 g kg?1 body weight for 150 days with formulated feeds (six treatment feeds each with two replicates of pond) to study the breeding performances. The feed ingredients were rice polish (RP) and groundnut oil cake (GNOC) (1 : 1) for T1 (control); RP, GNOC and fish meal (FM) (3 : 4 : 3) for T2; RP, GNOC, FM and soybean meal (SM) (3 : 4 : 2 : 1) for T3; RP, GNOC, FM and SM (3 : 4 : 1: 2) for T4; RP, GNOC, FM and SM (3 : 4 : 1 : 2) with added vitamin–mineral (VM) premix for T5; RP, GNOC, FM and SM (3 : 4 : 1 : 2) with added VM and vegetable oil for T6. Results indicated that except the feed T6, all other feed (T2–T5) with 338–344 g crude protein (CP) kg?1 feed enhanced the breeding performances of the fish compared with control (262 g CP kg?1). The feed T3 showed the best performances in terms of matured female (%), fully bred female (%), relative fecundity, spawn production and profit. This suggests that a combination of RP, GNOC, FM and SM at definite proportion could supply the essential nutrients needed for higher breeding response.  相似文献   

16.
Gastrointestinal and serum absorption of astaxanthin was studied in rainbow trout, Oncorhynchus mykiss (Walbaum) (217 ± 2 g) fed diets supplemented with either esterified astaxanthin (from Haematococcus pluvialis) or free astaxanthin (synthetic, as 8% w/w beadlets) at similar levels (50 mg kg?1). After 56 days of feeding, there was a significant difference (P = 0.0582) between steady‐state serum astaxanthin concentrations for fish fed free (2.0 ± 0.3 μg mL?1) or esterified astaxanthin (1.3 ± 0.1 μg mL?1) at the 90% confidence level. However, following ingestion of a single meal supplemented with free or esterified astaxanthin, the rates of astaxanthin absorption into serum were not significantly different (P > 0.1) (0.8 ± 0.2 µg mL?1 h?1 and 1.0 ± 0.4 µg mL?1 h?1 respectively). In fish fed both free or esterified astaxanthin, higher absorption (P < 0.05) of astaxanthin by the ileal (0.8 ± 0.14 μg g?1 and 0.9 ± 0.15 μg g?1 respectively) compared with the posterior (0.2 ± 0.01 μg g?1 and 0.3 ± 0.14 μg g?1 respectively) intestine was recorded. This confirmed the role of the anterior intestine in carotenoid absorption. Non‐detectable levels of esters in digesta taken from the hind intestine suggest the anterior intestine is also the primary region for ester hydrolysis.  相似文献   

17.
This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg?1 CSM or 450 g kg?1 RSM with or without 9 g kg?1 supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg?1 RSM were inferior to fish fed diets with 550 g kg?1 CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg?1 cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.  相似文献   

18.
Rainbow trout (initial body weight 4.16 ± 0.25 g) were fed diets [crude protein 420 g kg?1; gross energy 18.7 MJ kg?1 dry matter (DM); crude fat 110 g kg?1] containing graded levels of either a canola meal (crude protein 350 g kg?1 DM) supplemented with DL‐methionine as partial fish meal protein. A growth trial was conducted over 16 weeks at a water temperature of 12 ± 1 °C. At the end of the growth trial, in addition to body composition analyses, plasma tri‐iodothyronine (T3) and thyroxine (T4), cholesterol and liver fatty acid composition were measured. Replacement of fish meal with canola meal (100–570 g kg?1 replacement) did not affect on growth performance. At 16th week, plasma cholesterol levels were reduced in fish fed all diets in comparison with 8th week. Plasma T4 levels were significantly higher in the canola meal‐fed fish sampled after 16 weeks, but no significant differences in T3 levels were obtained (P > 0.05). Proximate compositions were affected by dietary treatments. The liver fatty acid composition reflected that of the diet with a higher level of polyunsaturated (n‐6) fatty acids in fish fed diet canola meal and a higher content in n‐3/n‐6 ratio in fish fed diet without canola meal. These studies show that canola meal has potential to replace substantial levels of fish meal in diets for carnivorous fish without compromising performance.  相似文献   

19.
The effects of dietary protein‐energy levels on the growth rate, proximate composition and production were examined in Nile tilapia, Oreochromis niloticus, at two starting weights (22.9 and 39.8 g) reared in concrete ponds for 180 days. The highest weight gain (183.1 g) was obtained with fish fed a 30% protein and 10.5 kJ g?1 diet for the small initial size and 180.2 g for a diet containing 25% protein and 12.6 kJ g?1 for the large initial size. Dressed yields (edible mass) and fillets increased to 56.9% and 52.5% in fish fed diet with 25% protein and 10.5 kJ g?1 at the initial size of 22.9 g, while fish started at 39.8 g exhibited the best values (56.5% and 52.1%) when fed the 30% protein and 10.5 kJ g?1 diet. Proximate composition of soft tissue (wet weight basis) in small fish was significantly influenced by dietary protein‐energy levels. Protein was 26.1±0.3% in fish fed the high protein (30%) and low energy (10.5 kJ g?1 diet), while lipid content was 6.4±0.3% at diet containing 20% protein and 14.7 kJ g?1 diet. Large initial size fish fed the diet with 25% protein and 14.7 kJ g?1 had the highest body protein (32.0±0.4%) and lowest lipid content (2.2±0.3%). Feed conversion ratio (FCR) and protein efficiency ratio varied with different dietary protein‐energy levels and initial fish sizes. Feed conversion ratio increased with increasing protein and decreasing energy level in the diet, and values in small fish were higher than values in large fish. Protein efficiency ratio decreased with increasing dietary protein level and decreasing energy level. The maximum total production (7.6 tons feddan?1) was with dietary high protein (30%) and low energy (10.5 kJ g?1) for small‐sized fish, while large initial fish had the highest production (3.7 tons feddan?1) when fed the 25% protein and 12.6 kJ g?1 diet energy. Starting with 22.9 g fish was more advantageous than the initial size of 39.8 g for rearing Nile tilapia. Small fish required a high‐protein and low‐energy diet, whereas large fish required a low‐protein and high‐energy diet to achieve highest production.  相似文献   

20.
A 74‐day trial was undertaken to evaluate the effects of temperature (16 and 22 °C) and dietary protein/lipid ratio on the performance of juvenile Senegalese sole (mean body weight: 6.4 g). Four experimental diets were formulated to contain two protein levels (550 g kg?1 and 450 g kg?1) combined with two lipid levels (80 g kg?1 and 160 g kg?1). Growth was higher at 22 °C and within each temperature in fish fed diets 55P8L and 45P16L. Feed efficiency, N retention (% NI) and energy retention (% EI) were higher at 22 and at both temperatures in fish fed diet 55P8L. Temperature affected whole‐body composition, with dry matter, protein, lipid and energy being higher and ash lower in fish kept at higher temperature. Independently of temperature, whole‐body lipid, energy and ash were higher and protein was lower in fish fed the high‐lipid diets. Visceral and hepatosomatic indices were not affected by diet composition but were higher in fish kept at 16 °C. Liver glycogen and lipid contents and activities of glutamate dehydrogenase, alanine and aspartate aminotransferases were not affected by diet or water temperature. Malic enzyme (ME) and glucose 6‐phosphate dehydrogenase activities were higher in fish fed the low‐lipid diets. ME activity was higher at lower temperature. In conclusion, increasing water temperature from 16 to 22 °C improves growth and feed efficiency of Senegalese sole juveniles; regardless of water temperature, the diet with 550 g kg?1 protein and 80 g kg?1 lipid promoted the best growth and feed efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号