首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
旨在克隆测定牛肌原调节蛋白2基因(Myozenin2,MYOZ2)启动子的全长序列,进行活性区域分析,为牛MYOZ2基因功能和表达调控机理研究提供理论依据。通过5′RACE方法确定牛MYOZ2基因转录起始位点;采用PCR技术,以牛基因组为模板克隆MYOZ2基因启动子序列。利用在线软件分析启动子区域中可能包含的转录因子结合位点。依据分析结果重新设计引物,构建7个包含不同缺失片段的双荧光素酶报告基因载体,转染C2C12细胞系,利用双荧光素酶系统检测不同片段的启动子活性。结果表明,克隆得到牛MYOZ2基因启动子序列2 065bp,确定MYOZ2基因的转录起始位点;MYOZ2基因片段-84/+125荧光素酶相对活性极显著高于空载体pGL3-Basic(P0.01),MYOZ2基因片段-683/+125荧光素酶相对活性极显著高于基因片段-263/+125(P0.01)。MYOZ2基因启动子核心区域位于-84/+125bp,而且MEF2,SRF,MyoD,YY1等转录因子可能参与MYOZ2基因的转录调控。  相似文献   

2.
旨在初步探索DKK1基因转录调控机制,本研究利用启动子在线预测软件分析了该基因启动子区序列特征,根据Ensembl数据库已公布的猪DKK1基因的5′侧翼区序列,设计特异性PCR引物进行扩增、测序,进而构建启动子区不同缺失片段的pGL3-DKK1双荧光素酶表达载体,分别转染293T细胞和Hela细胞,并进行双荧光素酶报告基因检测。结果显示,DKK1基因启动子中含有1个TATA-box、多种转录因子和1个CpG岛;DKK1基因启动子对239T细胞具有偏好性,其中p-1 679/+292bp启动子片段活性最高,且显著高于其他缺失片段(P0.01)。-953~-1 679bp为核心启动子区域,-586~-953bp区域可能存在负调控元件,在-953~-1 679bp区域可能存在正调控元件。本试验通过对DKK1基因进行生物信息学分析并结合不同长度启动子片段双报告基因活性检测,证实了DKK1基因的5′侧翼区序列具有启动子转录活性,并初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究DKK1基因转录调控机制奠定基础。  相似文献   

3.
山羊脂肪酸合酶基因(FASN)启动子结构与功能的初步分析   总被引:1,自引:0,他引:1  
本研究旨在对山羊脂肪酸合酶基因(Fatty acid synthase,FASN)启动子进行结构与功能的初步分析,进而对其转录调控机制进行探讨。采用PCR技术从西农萨能羊基因组DNA中克隆FASN基因启动子,通过缺失分析,构建7个包含不同缺失片段的荧光素酶报告基因载体,转染山羊乳腺上皮细胞和MCF-7细胞,利用双荧光素酶系统检测不同片段的启动活性。结果表明,克隆得到FASN基因的启动调控序列2 589bp,生物信息学分析发现,该启动子序列含有典型的启动转录元件TATA-box和E-box,分别位于转录起始位点(+1)上游-41和-74bp处。报告基因分析表明,启动子核心区域定位在-293~-79bp,在线软件预测发现,该区域含有Sp1、NF-Y、USF和SREBP等转录因子结合位点。结果显示,FASN基因启动子前端存在负调控元件,Sp1、NF-Y、USF和SREBP等转录因子可能参与FASN基因的转录调控。  相似文献   

4.
旨在通过分析猪StAR基因启动子活性区域,探究猪StAR基因的转录调控机制,从育种学角度为提高猪繁殖力提供新思路。本研究根据Ensembl数据库已公布的猪StAR基因的5′侧翼区序列,利用在线预测软件对该基因启动子区序列信息进行分析,以大白猪基因组DNA为模板,利用特异性引物,进行PCR扩增、测序,进而构建启动子区不同缺失片段的pGL3-StAR双荧光素酶表达载体,转染293T细胞并进行活性检测。结果显示,StAR基因5′侧翼区不含有典型的TATA-box和CpG岛;成功克隆了10个含有不同长度的启动子片段,并构建了各片段与表达载体的重组质粒;转染293T细胞后经双荧光素酶活性检测发现,大白猪StAR基因5′侧翼区存在着核心启动子,其中-196~+127bp这一区域活性值最高,且显著高于其他缺失片段(P0.01),表明在+127~-196bp的区域内存在重要的正调控因素,外显子1对启动子活性起重要的调控作用。-41~-196bp为核心启动子区域,该区域存在着关键的正调控元件,包含GATA2、GATA4、SP1、ZNF263、Hoxa9、KLF16和ZNF740转录因子结合位点。本试验通过对StAR基因进行生物信息学分析,并结合不同长度启动子片段双报告基因活性检测,证实了StAR基因的5′侧翼区序列具有启动子转录活性。初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究StAR基因转录调控机制提供理论依据。  相似文献   

5.
【目的】 分析鹅p21基因的结构和启动子活性,探讨p21基因的转录调控机制。【方法】 以泰州鹅为试验对象,通过同源克隆、RACE和生物信息学分析等方法获得鹅p21基因全长序列和5′-侧翼区序列特征;构建6个不同缺失片段的启动子区双荧光素酶报告载体并分析其荧光素酶活性,进而确定p21基因核心启动子区;对核心启动子区转录因子结合位点生肌决定因子(MyoD)(+25~+36 bp)进行定点突变,并构建突变报告基因载体,在C2C12细胞系内初步鉴定鹅p21基因核心转录调控因子。【结果】 鹅p21基因cDNA全长1 943 bp,CDS区大小为453 bp,编码151个氨基酸,蛋白序列包含高度保守的CDI家族结合位点。系统进化树分析表明,鹅p21基因与鸭亲缘关系最近,与鸡和火鸡有较强的进化关系。鹅p21基因5′-侧翼区包含启动子元件,—35~+37 bp是核心启动子区,发挥正向调控作用,结合定点突变技术初步鉴定MyoD是鹅p21基因核心转录调控元件。【结论】 本研究获得了鹅p21基因完整的cDNA序列和启动子区域,MyoD是p21基因核心转录调控因子,为探究p21基因在鹅胚胎期肌肉发育过程中的调控机制提供理论依据。  相似文献   

6.
为了找到水貂多巴色素异构酶(DCT)基因启动子活性区域及转录因子结合位点,试验采用PCR扩增与克隆,构建双荧光素酶报告基因重组质粒,分别转染到293T细胞和A375细胞,测定其活性,并利用在线软件对序列进行生物信息学分析,预测水貂DCT基因核心启动子区域的转录因子结合位点。结果表明:得到的6个不同长度的启动子片段均具有明显的启动子活性,且-1 292~+113 bp区域活性最高,提示其为水貂DCT基因核心启动子区域;成功筛选出337 bp水貂DCT基因活性较高的启动子片段,发现转录因子特异性蛋白1(Sp1)可能是调控启动子活性的重要转录因子。  相似文献   

7.
8.
【目的】 鉴定绵羊趋化因子C-C基序配体19(C-C motif chemokine ligand 19,CCL19)基因启动子的核心启动子区域和关键转录因子,探究该基因在转录调控方面的作用机制。【方法】 选取绵羊CCL19基因5'-侧翼序列1 000 bp,PCR扩增启动子的7个不同长度的截短片段,并连接至pGL3-Basic质粒;将重组质粒与pRL-TK质粒共转染到293T细胞中,结合双荧光素酶报告基因检测系统分析不同截短片段的相对荧光活性。利用在线预测软件分析和筛选CCL19基因核心启动子区域内的转录因子结合位点。采用定点突变技术构建转录因子结合位点缺失的荧光素酶报告载体,与pRL-TK质粒共转染到293T细胞,分析转录因子结合位点缺失质粒的相对荧光活性。【结果】 成功构建了7个不同长度(pGL3-P、pGL3-P1、pGL3-P2、pGL3-P3、pGL3-P4、pGL3-P5及pGL3-P6)的CCL19基因启动子片段的荧光素酶报告载体;采用双荧光素酶报告基因检测系统鉴定出转录起始位点上游-256/-186 bp为CCL19基因启动子核心启动子区域,表明该区域对CCL19基因转录调控有重要作用。生物信息学分析预测到该区域存在POU5F1(-201/-189 bp)、ZBTB26(-228/-217 bp)、FOXI1(-239/-228 bp)、GLI2(-255/-243 bp)和SP2(-219/-211 bp) 5个转录因子的结合位点,并成功构建了转录因子结合位点缺失的荧光素酶报告载体。双荧光素酶报告基因检测系统分析显示,POU5F1转录因子的结合位点缺失后绵羊CCL19基因转录活性极显著降低(P<0.01),FOXI1、ZBTB26、SP2转录因子结合位点缺失后绵羊CCL19基因转录活性均极显著升高(P<0.01)。【结论】 试验成功构建CCL19基因启动子荧光素酶报告载体,确定CCL19基因启动子的核心启动子区域为转录起始位点上游-256/-186 bp,并鉴定出转录因子POU5F1结合位点可能是CCL19基因转录的重要调控位点,为下一步研究绵羊CCL19基因在先天性免疫、适应性免疫和淋巴细胞迁移等方面的功能提供理论基础。  相似文献   

9.
旨在筛选调控山羊毛色基因PMEL的启动子活性区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为彩色山羊的育种和改良提供思路。以山羊基因组DNA为模板,PCR扩增PMEL基因不同长度的启动子缺失片段,定向克隆至pGL3-basic载体,将重组质粒转染到293T和A375细胞,通过双荧光素酶检测系统测定相对荧光素酶活性值;利用生物信息学方法对PMEL基因核心启动子区的转录因子结合位点进行预测,随后利用重叠延伸PCR分别对pGL3-327质粒上预测的转录因子结合位点进行点突变并构建突变载体,利用双荧光素酶检测系统进行活性验证。结果显示,本研究成功构建了7个不同长度的启动子片段,其中6个片段具有明显的启动子活性。经过双荧光素酶活性检测发现山羊PMEL基因-251/+76区域为核心启动子区域。通过不同长度的启动子片段的活性比较发现,-251/-62区域的缺失造成启动子活性从最高到消失,表明该区域对山羊PMEL基因转录调控有重要影响,生物信息学分析发现该区域存在5个转录因子结合位点,利用点突变构建了5个突变载体,经过双荧光素酶检测发现5个突变载体的活性均显著下降。提示这5个转录因子是山羊PMEL基因转录的正调控元件。本研究确定了山羊PMEL基因启动子核心区域为-251/+76,NF-1(-206/-197)、Sp1(-186/-174)、Sp1(-151/-139)、CREB(-91/-82)和Sp1(-82/-71)结合位点为山羊PMEL基因转录的正调控元件。  相似文献   

10.
11.
旨在克隆获得水貂DCT基因5′UTR序列并分析其结构特征,预测转录调控元件并检测启动子活性,为探究DCT基因在调控水貂毛皮颜色形成中的作用提供理论依据。本研究利用PCR扩增黑貂、白貂和咖啡貂DCT基因5′UTR,构建咖啡貂DCT基因5′UTR的pGL3-1~pGL3-7和黑貂pGL3-4~pGL3-6缺失片段的荧光素酶报告基因重组质粒,检测各片段的启动子活性;利用亚硫酸氢盐法检测3种毛色水貂DCT基因启动子区CpG岛甲基化水平。结果,克隆获得水貂DCT基因长8 203 bp的5′UTR序列,发现g.7133-7336为长204 bp的转座元件,与其高相似度的100条序列中,一条为蜕皮动物总门线虫纲的索巴利吸虫,其他均来自犬形亚目。P3和P4片段具有显著的启动子活性(P<0.05);咖啡貂的CpG岛甲基化水平显著高于黑貂和白貂(P<0.05);咖啡貂CC单倍型启动子活性显著低于黑貂的TT单倍型片段(P<0.05)。结果表明,水貂DCT基因5′UTR长204 bp的犬形亚目特异短散在元件Can-SINEs由蜕皮动物门的索巴利吸虫侵入动物基因组形成;基因上游32 bp元件和近端域共同作用发挥启动子活性,而GC-box和CpG岛结构沉默水貂DCT基因启动;g.-684和g.-621位点的T> C突变形成的CC单倍型导致咖啡貂DCT基因的高甲基化与低启动子活性,从而抑制真黑素合成,产生咖啡色被毛特征。  相似文献   

12.
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

13.
旨在研究山羊卵巢维持基因FOXL2启动子活性以及探究该基因的调控机理。从NCBI数据库调取FOXL2基因启动子序列,用生物信息学软件对其核心启动子和转录因子进行预测分析。使用PCR技术克隆FOXL2基因启动子序列,并构建一系列缺失载体,瞬时转染293T和A375细胞,利用双荧光素酶基因检测仪测定相对荧光素酶活性值。结果表明,该基因启动子区域存在两个典型的CpG岛,分别位于(-920/+51(972bp))和(+125/+555(430bp))区域;经KpnⅠ和HindⅢ双酶切鉴定表明,重组载体质粒构建正确;在细胞中插入不同长度的FOXL2基因启动子片段,随着启动子5′端截短,荧光素酶转录活性先升高再逐渐降低。(-934/+324)区域存在转录活性,(-32/+324)区段包含了转录的基本元件;(-934/-456)区域在转录过程中对FOXL2基因起负调控作用,(-456/-192)区域为正调控区域。  相似文献   

14.
本研究旨在确定徐淮山羊c-Myc基因启动子区域,找出该基因启动子的核心调控区,初步探讨c-Myc基因的表达调控机制。根据UCSC基因组数据库已公布的绵羊c-Myc基因的启动子序列,设计特异性PCR引物扩增c-Myc基因的一系列启动子缺失片段,定向克隆至pEGFP-N1和PGL3-c-Myc,分别转染gFF、COS7及P19细胞,并进行TSA和NFAT1诱导,同时对-402~-249bp区域的转录因子SP1结合位点进行定点突变,最后进行双荧光报告基因活性检测。结果表明,徐淮山羊c-Myc基因5′侧翼区-1 334~+1bp区域的启动子活性最强,-402~+1bp区域为c-Myc基因启动子基本活性区域。进一步研究发现,-1 334~-971bp、-587~-147bp区域存在正调控元件,-1 976~-1 334bp、-971~-587bp区域存在负调控元件。TSA和NFAT1均能增强cMyc启动子的活性,SP1结合位点定点突变后,启动子活性降低。本试验通过构建包含c-Myc基因启动子不同片段的重组报告基因载体并比较其转录活性,确定了c-Myc基因启动子的核心区域,发现转录因子SP1是c-Myc基因启动子核心区域的调控元件,为进一步研究c-Myc基因的表达调控机制奠定了基础。  相似文献   

15.
甘露聚糖结合凝集素C(mannose binding lectin C,MBL-C)是C型(Ca2+依赖型)凝集素超家族的成员,其作为一种急性期蛋白,具有抗细菌感染的功能,参与机体的天然免疫反应。为鉴定出结合在MBL2基因启动子区(1 009 bp)的重要转录因子,探寻该基因的转录调控机制,本研究选取海南黑山羊MBL2基因的启动子序列1 009 bp,采用DNA重组技术克隆6个转录起始位点上游1 009 bp的启动子5'端侧翼缺失序列,克隆片段经双酶切后连接至pGL3-Basic载体。重组质粒转染至293T细胞中,结合双荧光素酶活性检测系统筛选MBL2基因的核心启动子区域。通过在线生物信息学软件预测山羊MBL2基因的核心启动子区域的转录因子结合位点,利用点突变技术构建转录因子结合位点缺失的载体,转染293T细胞后结合双荧光素酶活性检测系统分析其转录活性。结果表明,海南黑山羊MBL2基因的核心启动子区域位于转录起始位点上游-304~-45 bp范围内,在线软件分析该区域存在RELA、NF-κB2、MZF1等3种转录因子结合位点。双荧光素酶报告分析结果表明,RELA和NF-κB2的结合位点缺失后均使山羊MBL2基因的转录活性极显著下降(P < 0.01)。结果提示,RELA和NF-κB2对山羊MBL2基因的转录活性可能具有重要的正调控作用。该研究为进一步探寻海南黑山羊MBL2基因的功能提供理论依据。  相似文献   

16.
旨在了解分化群α基因可能的调控序列及其转录调控机制。本研究利用基因组步移技术扩增鸭CD8α基因的启动子区序列,使用在线软件进行序列分析;分别将鸭肝炎易感组和抗性组的CD8α基因启动子区定向亚克隆至荧光素酶表达载体pGL3-Basic中,利用酶切与测序技术进行鉴定;并瞬时转染细胞,采用荧光素酶报告基因系统检测启动子载体的活性。结果,扩增出一条长度为2 480bp的片段(包含第一外显子56bp,启动子区2 424bp)。经序列分析,鸭CD8α基因启动子区具有典型的TATA-box、GC-box和CAAT-box,其转录起始位点位于翻译起始密码子ATG上游-406bp处,且发现了CdxA、Nkx-2、GATA-1、SRY等41个潜在转录因子结合位点。经酶切与测序鉴定,成功构建了鸭CD8α基因荧光素酶报告基因重组体。荧光素酶报告基因检测系统显示,构建的鸭肝炎易感组和抗性组的报告基因启动子载体具有相当的活性。研究结果为进一步探讨CD8α基因的转录调控奠定了基础。  相似文献   

17.
心脏型脂肪酸结合蛋白(FABP3)是一种15 kDa的蛋白,涉及信号转导途径,参与长链脂肪酸的摄取及利用。本研究采用PCR技术扩增FABP3启动子序列,通过缺失分析构建了5个不同缺失片段荧光素酶报告基因载体,并转染奶山羊乳腺上皮细胞,通过双荧光素酶报告基因系统检测FABP3缺失片段启动子活性。结果表明:从奶山羊基因组中克隆得到2109 bp FABP3基因启动子序列(包括转录起始位点上游1985 bp),与牛(KJ649748.1)、猪(HM591296.1)和人(NG047049.1)的基因组序列同源性分别为90%、80%、75.08%。经转录因子在线软件预测分析发现,该启动子含有潜在的TATA框(TATA-box)、过氧化物酶增殖物激活受体反应元件(PPRE)、肝X受体反应元件(LXRE)、雌激素受体(ER)及两个环磷腺苷效应元件结合蛋白(CREB)的结合位点,分别位于-1632 bp和-189 bp。缺失突变研究发现,启动子片段-1801 ~ +124活性最高,同时这一片段含有两个CREB结合位点,而当缺失至-80位点时,活性显著下降(P < 0.05),且这一片段不包含CREB结合位点。表明CREB可能参与调控FABP3基因启动子的活性,为FABP3基因的转录调控研究提供理论依据。 [关键词] 心脏型脂肪酸结合蛋白(FABP3)|启动子|基因克隆|西农萨能奶山羊  相似文献   

18.
旨在探究DCT基因启动子区甲基化水平和SNP突变对山羊毛色的影响,为探索DCT基因调控山羊毛色变化的机理提供理论依据。本研究以山羊为试验动物,对DCT基因启动子区进行CpG岛预测,设计引物对预测的2个CpG岛富集区域进行亚硫酸氢盐甲基化测序,使用甲基化水平分析软件BISMA统计甲基化位点,比较唐山奶山羊(白色)和南江黄羊(黑色品系)两种不同毛色山羊群体DCT基因启动子区甲基化水平差异。克隆DCT基因核心启动子区,筛选不同毛色山羊群体的SNPs,使用JASPAR和Nsite预测SNPs位点突变前后转录因子的改变,并检测比较突变前后DCT基因启动子活性变化。结果,成功克隆了山羊DCT基因启动子区甲基化序列及核心启动子区(g.-1045~-318)。在g.-348~-150区域和g.+222~+502区域分别发现6个和23个甲基化位点,其中g.+312、g.+352和g.+400位点与g.+389和g.+404位点白色山羊甲基化水平分别显著和极显著高于黑色山羊(P<0.05和P<0.01),并且g.+222~+502区域白色山羊甲基化平均水平极显著高于黑色山羊(P<0.01)。在DCT基因核心启动子区的g.-804T> G、g.-705C> T和g.-679G> A,3个SNPs位点的基因型构成在白色山羊和3个有色山羊群体中存在差异,g.-804T> G突变导致该区域的SOX10转录因子结合位点缺失,DCT基因启动子活性显著下降(P<0.05)。结果显示,白色山羊DCT基因g.+222~+502区域的高甲基化水平,g.-804、g.-714和g.-679 3个位点的突变,尤其是g.-804T> G造成SOX10转录因子结合位点的缺失,突变的G型DCT基因启动子活性显著降低。因此,DCT基因启动子区SNP突变和高甲基化水平可能抑制了基因的表达从而形成山羊白色被毛。  相似文献   

19.
本文旨在研究鸡脂蛋白酯酶基因(lipoprotein lipase,LPL)启动子的结构和启动子活性。采用PCR方法扩增了鸡LPL基因5′侧翼区2kb的DNA片段,对其进行克隆、测序及序列分析后,构建了其全长及系列截断突变的报告基因表达载体,瞬时转染鸡胚成纤维细胞(DF-1),用双荧光素酶报告系统测定了荧光素酶活性。生物信息学分析发现,鸡LPL基因启动子区存在Oct-1、GCbox、CCAAT、GATA、AP1等调控元件,在启动子-575~+137bp区域内存在一个CpG岛。报告基因分析表明,鸡LPL基因的启动子-359~+163bp区域就具有启动子活性,启动子-601~+163bp区域具有最强的启动子活性。结果显示,鸡LPL基因受多种转录因子和上游序列的调控,本研究为深入研究鸡LPL基因的表达调控机制奠定了基础。  相似文献   

20.
旨在分析鹅MyoG基因启动子活性区域和转录因子,探究该基因的转录调控机制。本研究首先通过PCR扩增泰州鹅MyoG基因5'侧翼区序列1 245 bp并对其进行测序和生物信息学分析,其次,构建4个不同缺失片段的双荧光素酶报告载体,转染C2C12细胞系。进一步利用在线软件预测核心启动子区关键转录因子,对转录因子结合位点HNF4(-521~-503 bp)、USF (-379~-370 bp)和E2(-296~-281 bp)进行定点突变并构建突变报告基因载体,在C2C12细胞系内初步鉴定MyoG基因核心转录调控因子。最后,采集70日龄泰州鹅胸肌、腿肌、心、肝、脾、肺、肾和下丘脑组织样,利用荧光定量PCR检测MyoG基因和核心转录调控因子的组织表达谱。结果表明,扩增得到的鹅MyoG基因5'侧翼区序列包含启动子元件;利用双荧光素酶报告载体检测到鹅MyoG基因启动子区-624~-154 bp区域存在关键顺式调控元件;结合定点突变技术初步鉴定USF是鹅MyoG基因核心转录调控元件。组织表达谱研究进一步表明,MyoGUSF基因在鹅8个不同组织中均有表达,且在胸肌、腿肌和心组织中共同高表达(P<0.01)。鹅MyoG基因5'侧翼区具有启动子转录活性,-624~+37 bp是核心启动子区,USF是MyoG核心转录调控因子。试验结果为探究MyoG基因在鹅肌肉发育过程的调控机制提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号