首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The objective of this study was to develop prediction equations for estimating proportional carcass yield to a variety of external trim levels and bone-in and boneless pork primal cuts. Two hundred pork carcasses were selected from six U.S. pork processing plants and represented USDA carcass grades (25% USDA #1, 36% USDA #2, 25% USDA #3, and 14% USDA #4). Carcasses were measured (prerigor and after a 24 h chill) for fat and muscle depth at the last rib (LR) and between the third and fourth from last rib (TH) with a Hennessy optical grading probe (OGP). Carcasses were shipped to Texas A&M University, where one was randomly assigned for fabrication. Selected sides were fabricated to four lean cuts (ham, loin, Boston butt, and picnic shoulder) then fabricated progressively into bone-in (BI) and boneless (BL) four lean cuts (FLC) trimmed to .64, .32, and 0 cm of s.c. fat, and BL 0 cm trim, seam fat removed, four lean cuts (BLS-OFLC). Total dissected carcass lean was used to calculate the percentage of total carcass lean (PLEAN). Lean tissue subsamples were collected for chemical fat-free analysis and percentage carcass fat-free lean (FFLEAN) was determined. Longissimus muscle area and fat depth also were collected at the 10th and 11th rib interface during fabrication. Regression equations were developed from linear carcass and OGP measurements predicting FLC of each fabrication point. Loin muscle and fat depths from the OPG obtained on warm, prerigor carcasses at the TH interface were more accurate predictors of fabrication end points than warm carcass probe depth obtained at the last rib or either of the chilled carcass probe sites (probed at TH or LR). Fat and loin muscle depth obtained via OGP explained 46.7, 52.6, and 57.1% (residual mean square error [RMSE] = 3.30, 3.19, and 3.04%) of the variation in the percentage of BI-FLC trimmed to .64, .32, and 0 cm of s.c. fat, respectively, and 49.0, 53.9, and 60.7% (RMSE = 2.91, 2.81, and 2.69%) of the variation in the percentage of BL-FLC trimmed to .64, .32, and 0 cm of s.c. fat, respectively. Fat and loin muscle depth from warm carcass OGP probes at the TH interface accounted for 62.4 and 63.5% (RMSE = 3.38 and 3.27%) of the variation in PLEAN and FFLEAN, respectively. These equations provide an opportunity to estimate pork carcass yield for a variety of procurement end point equations using existing on-line techniques.  相似文献   

2.
Growth, development, and carcass composition in five genotypes of swine.   总被引:3,自引:0,他引:3  
An experiment with 127 barrows representing five genotypes, 1) H x HD, 2) SYN, 3) HD x L[YD], 4) L x YD, and 5) Y x L (H = Hampshire, D = Duroc, SYN = synthetic terminal sire line, L = Landrace, and Y = Yorkshire), was conducted to evaluate growth and development of swine from 59 to 127 kg live weight. Animals were allowed ad libitum access to a pelleted finishing diet containing 18.5% CP, .95% lysine, and 10.5% fat, with an energy density of 3,594 kcal of ME/kg. Pigs were serially slaughtered at either 59, 100, 114, or 127 kg live BW. After slaughter, carcasses were chilled and backfat was measured at four locations. The right side of each carcass was fabricated into primal cuts of ham, loin, Boston Butt, picnic, and belly. Composition of each primal cut was determined by physical dissection into lean, fat, bone, and skin. Estimated allometric growth coefficients for carcass length, carcass weight, and longissimus muscle area relative to BW; carcass lean, fat, bone, and skin relative to both BW and carcass weight; and lean in each of the primal cuts relative to total carcass lean did not differ (P greater than .05) among genotypes. Relative to BW, the pooled growth coefficient(s) for carcass weight was (were) greater (P less than .001) than unity, whereas those for carcass length, longissimus muscle area, and backfat at first rib were smaller (P less than .001) than unity. Those for other backfat measurements were close to 1.00. Relative to either BW or carcass weight, the pooled coefficient(s) for fat was (were) greater (P less than .001) than unity, whereas those for lean, bone, and skin were smaller (P less than .001) than unity. Growth of lean, backfat, bone, and skin in the carcass were nearly linearly associated with increases in BW. The increase in fat weight was curvilinear as the pig grew and was accelerated in later growth stages, indicating that carcass fat percentage increased with increased BW.  相似文献   

3.
Mature beef cows (n = 83) were slaughtered to measure the influence of body condition score (BCS) on carcass characteristics and subprimal yields. All cows were weighed and assigned BCS, based on a 9-point scale, 24 h before slaughter. Cows were slaughtered, and, after a 48-h chilling period, quality and yield grade data were collected on the left side of each carcass. The right side was quartered, fabricated into primal cuts, and weighed. Each primal cut was further processed into boneless subprimal cuts, minor cuts, lean trim, fat, and bone. Cuts were progressively trimmed to 6.4 and 0 mm of external and visible seam fat. Weights were recorded at all stages of fabrication, and subprimal yields were calculated as a percentage of the chilled carcass weight. Live weight, carcass weight, dressing percentage, fat thickness, longissimus muscle area, muscle:bone ratio, and numerical yield grade increased linearly (P = .0001) and predicted cutability and actual muscle-to-fat ratio decreased linearly (P = .0001) as BCS increased from 2 to 8. Carcasses from BCS-8 cows had the most (P<.05) marbling. The percentage of carcasses grading U.S. Utility, or higher, was 16.7, 20.0, 63.6, 43.3, 73.3, 100.0, and 100.0% for cows assigned a BCS of 2, 3, 4, 5, 6, 7, and 8, respectively. At 6.4 mm of fat trim, carcasses from BCS-5 cows had higher (P<.05) shoulder clod yields than carcasses from cows having a BCS of 6, 7, and 8. Carcasses of BCS-2 cows had lower (P<.05) strip loin yields than carcasses from BCS-3, 4, 5, 6, and 7 cows. Top sirloin butt yields were higher (P<.05) for carcasses of BCS-2, 3, 4, and 5 cows than those of BCS-6, 7, or 8 cows. Carcasses from BCS-7 and 8 cows had lower (P<.05) tenderloin and inside round yields than carcasses of BCS-5, or less, cows. At both fat-trim levels, carcasses from BCS-5 cows had higher (P<.05) eye of round yields than cows assigned BCS of 2, 7, or 8. When subprimal cuts were trimmed to 6.4 mm of visible fat, carcasses from BCS-5 cows had higher (P<.05) total lean product yields than cows assigned a BCS of 2, 4, 7, and 8. Regardless of fat trim, total fat yields increased (P = .0001) and total bone yields decreased (P = .0001) linearly as BCS increased from 2 to 8. Although carcasses from BCS-5 and 6 cows had the highest yields of lean product, cattle producers and packers may benefit most by marketing and(or) purchasing BCS-6 cows because a higher percentage of their carcasses had quality characteristics deemed desirable for fabrication into boneless subprimal cuts.  相似文献   

4.
Data from 456 homozygous halothane normal purebred Yorkshire, Duroc, and Other-breed pigs from two national progeny testing and genetic evaluation programs were utilized to estimate genetic parameters for carcass components in pigs. Carcass components were cut and weighed according to Institutional Meat Purchase Specifications. Primal cut weights evaluated included 401 Ham (HAM), 410 Loin (LOIN), 405 Picnic shoulder (PIC), 406 Boston Butt (BB), and 409 Belly (BELLY). Individual muscle weights included the inside (INS), outside (OUT), and knuckle (KNU) muscles of the ham, the longissimus dorsi (LD) and psoas major (TEND) of the loin, and the boneless components of both the Boston Butt (BBUTT) and picnic (BPIC). Muscle weights from each primal were summed to yield a boneless subprimal weight (BHAM, BLOIN, BSHLDR), and all boneless subprimals were summed to yield total primal boneless lean (LEAN). Heritability estimates for HAM, LOIN, and BELLY were 0.57, 0.51, and 0.51, respectively. Heritability estimates for BB and PIC were 0.09 and 0.21, respectively. Heritability estimates for the boneless components of each primal were higher than those for the intact primals. Genetic correlations for HAM, LOIN, and PIC with loin muscle area (LMA) were 0.53, 0.78, and 0.70, respectively, and-0.62, -0.51, and -0.60, respectively, with 10th rib off-midline backfat (BF10). Boneless subprimal components were highly correlated with LEAN. Gilts had heavier weights (P < 0.01) than barrows for all boneless subprimals, individual muscles, LEAN, and for all primal cuts except BELLY. Gilts also had less BF10 and more LMA (P < 0.01) than barrows. Duroc pigs had a heavier (P < 0.01) weight for HAM and PIC when compared to Yorkshires. Yorkshire pigs had more (P < 0.01) LOIN weight than did the Durocs. Results suggest primal, boneless subprimal, and individual muscle weights in pigs should respond favorably to selection.  相似文献   

5.
Two feeder pig grading systems were tested. Forty-five barrows were selected using current USDA Feeder Pig Grade Standards (U.S. No. 1, No. 2 and No. 3). Additionally, 45 barrows were selected using three frame sizes (large, medium and small). Pigs were slaughtered at 100, 113.5 of 127 kg live weight. Trimmed four lean cuts were separated into soft tissue, skin and bone. The skinless belly and soft tissue from the four lean cuts were ground separately and analyzed chemically. Data from each grading system were analyzed separately in a 3 X 3 factorial plan. Pigs selected using current USDA grade standards differed (P less than .05) for last rib backfat, 10th rib fat depth, longissimus muscle area, percentage of trimmed four lean cuts and USDA carcass grade. In the frame size system, pigs with large frame size had less last rib backfat, less 10th rib fat depth, longer carcasses, higher percentage of four lean cuts and superior USDA carcass grades than pigs with small frame size did (P less than .05). The Bradley and Schumann test of sensitivity showed that selection by frame size was more sensitive than current USDA grade standards for discriminating feeder pig foreleg length, body depth and ham width. In addition, selection by frame size was more sensitive than current USDA grade standards for discriminating carcass length and carcass radius length. No increase in sensitivity (P greater than .10) was noted for carcass composition or growth traits over the current USDA Feeder Pig Grade Standards.  相似文献   

6.
Live animal and carcass data were collected from market barrows and gilts (n = 120) slaughtered at a regional commercial slaughter facility to develop and test prediction equations to estimate carcass composition from live animal and carcass ultrasonic measurements. Data from 60 animals were used to develop these equations. Best results were obtained in predicting weight and percentage of boneless cuts (ham, loin, and shoulder) and less accuracy was obtained for predicting weight and ratio of trimmed, bone-in cuts. Independent variables analyzed for the live models were live weight, sex, ultrasonic fat at first rib, last rib, and last lumbar vertebra, and muscle depth at last rib. Independent variables for the carcass models included hot carcass weight, sex of carcass, and carcass ultrasonic measurements for fat at the first rib, last rib, last lumbar vertebra, and muscle depth at last rib. Equations were tested against an independent set of experimental animals (n = 60). Equations for predicting weight of lean cuts, boneless lean cuts, fat-standardized lean, and percentage of fat-standardized lean were most accurate from both live animal and carcass measurements with R2 values between .75 and .88. The results from this study, under commercial conditions, suggest that although live animal or carcass weight and sex were the greatest contributors to variation in carcass composition, ultrasonography can be a noninvasive means of differentiating value, especially for fat-standardized lean and weight of boneless cuts.  相似文献   

7.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as carcass adjusted 12th-rib fat thickness. After collection of USDA carcass grade data, one side of each carcass was fabricated into boneless primals, subprimals, and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the knuckle, tri-tip, and tenderloin, which were trimmed of all fat. Forced four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at the three fat trim levels as influenced by sex class, frame size, muscle score, and adjusted 12th-rib fat thickness. Independent variables that had the most influence on percentage yield of primals and boneless subprimals were adjusted 12th-rib fat thickness and sex class. Within the same phenotypic group, percentage of trimmable fat increased by 2.32% as 12th-rib fat thickness increased by .75 cm. Estimated percentage yield of the major subprimals from the loin and round tended to be higher or relatively equal for heifer carcasses at all trim levels compared with those subprimals from steer carcasses. Holding frame size, sex class, and fat thickness constant, there was a higher percentage yield of chuck roll, rib eye roll, and strip loin for carcasses from thick-muscled cattle than for those from average- and thin-muscled cattle. Frame size had little effect on percentage yield of boneless subprimals.  相似文献   

8.
Crossbred progeny sired by either Duroc or Pietrain boars, normal for the ryanodine receptor gene, were evaluated for carcass composition and meat quality. Boars from each breed were mated to Yorkshire or F1 Yorkshire-Landrace females. A total of 162 off-spring was evaluated for carcass and meat quality traits at a common age (approximately 26 wk of age). Duroc-sired progeny had heavier (108.0 vs. 103.0 kg, P < 0.001) and longer carcasses (86.9 vs. 84.8 cm, P < 0.01), whereas Pietrain-sired pigs had less backfat at the first rib (44.6 vs. 47.7 mm, P < 0.01), last lumbar vertebrae (20.9 vs. 23.0 mm, P < 0.05), and 10th rib (23.0 vs. 25.5 mm, P < 0.01). No difference between Pietrain and Duroc progeny was detected for fat depth at the last rib (27.8 vs. 28.8 mm, respectively). Pietrain progeny had a higher percentage of lean at slaughter (52.6 vs. 50.7, P < 0.05) and higher dressing percentage (74.0 vs. 73.1, P < 0.01). Primal cut weights were collected with Pietrain progeny having a greater percentage of carcass as ham (23.0 vs. 22.4, P < 0.01) and loin (21.6 vs. 21.2, P < 0.05), whereas Duroc progeny had a higher percentage of belly weight (12.0 vs. 11.7, P < 0.05). Percentages of Boston butt (8.8 vs. 9.0) and picnic shoulder (9.9 vs. 9.9) were similar for Duroc vs. Pietrain progeny. Total weight of these five primal cuts, as a percentage of carcass weight, was higher for Pietrain progeny (75.2 vs. 74.3, P < 0.01). With heavier carcass weight, Duroc progeny had greater primal cut weights as a function of age. Subjective meat quality scores for color, marbling, and firmness (1 to 5 scale) were more favorable for Duroc-sired progeny. Furthermore, chops from Duroc progeny had higher 24-h pH (5.53 vs. 5.48, P < 0.001) and Minolta a* (17.33 vs. 17.04, P < 0.05) with less percentage drip loss (2.88 vs. 3.80, P < 0.001). No differences were detected between Duroc- and Pietrain-sired progeny for Minolta L* (54.77 vs. 55.37) or b* (7.58 vs. 7.58) objective color scores, percentage cooking loss (28.63 vs. 29.23), or Warner-Bratzler shear force (6.94 vs. 7.11 kg). Both sire breeds have beneficial traits that can be utilized in commercial pork production and merit further study.  相似文献   

9.
Conjugated linoleic acid changes swine performance and carcass composition   总被引:22,自引:0,他引:22  
Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of linoleic acid. Dietary CLA has been shown to improve feed efficiency, decrease body fat, and increase lean tissue in laboratory animals. We hypothesized that CLA would improve performance and carcass composition and would be deposited in pork tissues. Diets of 40 crossbred pigs were supplemented with CLA to determine its effects on performance and carcass composition. Eight replications of five littermate barrows with an initial average weight of 26.3 kg were allotted at random to individual pens. Within replication dietary treatments containing 0, 0.12, 0.25, 0.5, or 1.0% CLA were assigned at random. Pigs were weighed and feed disappearance was determined at 14-d intervals. Average daily gain increased linearly as the level of CLA increased in the diet (P < 0.05). Average daily feed intake was not affected by the concentration of CLA in the diet. Therefore, a linear increase in gain:feed ratio (P < 0.05) was observed. Carcasses from animals fed control diets had greater 10th rib backfat than carcasses from animals fed CLA (P < 0.05). Ultrasound measurement and carcass measurements showed less fat depth over the loin eye at the 10th rib of pigs fed doses of CLA (P < 0.05) than that observed for control pigs. Belly hardness (firmness) increased linearly as the concentration of CLA in the diet increased when bellies were measured for firmness either lean side up (P < 0.001) or lean side down (P < 0.05). Loin dissection data demonstrated that CLA produced a quadratic treatment effect both for less intermuscular fat (P < 0.001) and less subcutaneous fat (P < 0.05) and a linear increase for bone (P < 0.05), although finished loin weight only tended to increase (P = 0.08). The CLA concentration increased in a linear relationship in both subcutaneous fat (P < 0.001) and lean tissue (P < 0.001). Dietary CLA was incorporated into pig tissues and had positive effects on performance and body composition.  相似文献   

10.
Twenty Rambouillet wether lambs were given ad libitum access to a diet with (BAA, n = 10) or without (control, n = 10) 1 ppm of the beta-adrenergic agonist L644,969. Lambs were fed to a constant slaughter weight end point of 54.5 kg. Carcasses were fabricated to yield bone-in and boneless cuts that were trimmed progressively to 1.27, .64, .32, and .00 cm of s.c. fat remaining. Addition of BAA did not affect growth traits. Actual and adjusted fat thickness, body wall thickness, and percentage of kidney-pelvic fat did not differ between control and BAA lambs. However, BAA increased longissimus muscle area, longissimus muscle depth, and leg score while decreasing USDA yield grade. The BAA increased carcass conformation scores and decreased flank lean color scores. No other carcass quality measurements were affected by BAA. Addition of BAA did not affect overall carcass yields of bone-in retail cuts. However, BAA increased overall carcass yields of boneless retail cuts regardless of fat trim level. The BAA increased bone-in leg yield. Yield of boneless sirloin, bone-in loin and boneless loin were not affected by BAA. For these cuts, the percentage change from the control was highly dependent on fat trim level. There was no difference in short-cut, shank-off, semiboneless leg yield between control and BAA. Addition of BAA did not affect yield of bone-in rack regardless of fat trim level. However, BAA greatly increased yield of boneless ribeye. The BAA did not affect yield of bone-in or boneless shoulder.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hot carcasses from 220 steers (progeny of Hereford or Angus dams mated to Angus, Charolais, Galloway, Gelbvieh, Hereford, Longhorn, Nellore, Piedmontese, Pinzgauer, Salers, or Shorthorn sires) were used to develop equations to estimate weights and percentages of retail product (RP) and trimmable fat (TF) yields. Independent variables examined were 1) 12-13th rib fat probe (12RFD), 2) 10-11th rib fat probe (10RFD), 3) external fat score (EFS), 4) percentage of internal fat estimated hot (H%KPH), 5) hindquarter muscling score (HQMS), and 6) hot carcass weight (HCW). Right sides of the carcasses were fabricated into boneless retail cuts, trimmed to .76 cm of subcutaneous and visible intermuscular fat, and weighed. Cuts were trimmed to 0 cm of subcutaneous and visible intermuscular fat and reweighed. Multiple linear regression equations containing 12RFD, EFS, H%KPH, and HCW accounted for 95 and 89% of the variation in weight of total RP at .76 and 0 cm of fat trim, respectively. When weights of RP from the four primal cuts (.76 and 0 cm of fat trim) were the dependent variables, equations consisting of 12RFD, EFS, H%KPH, and HCW accounted for 93 to 84% of the variation. Hot carcass equations accounted for 83% of the variation in weight of total TF at both .76 and 0 cm of fat trim. Furthermore, equations from hot carcass data accounted for 54 and 51% of the variation in percentage of total RP and 57 and 50% of the variation in percentage of RP from the four primal cuts at .76 and 0 cm of fat trim, respectively. Hot carcass prediction equations accounted for 72% of the variation in percentage of total TF at both fat trim levels. Hot carcass equations were equivalent or superior to equations formulated from chilled carcass traits.  相似文献   

12.
Twenty-four U.S. crossbred (Duroc x White composite; D x Wc; 83.9 kg), 24 purebred Meishan (M; 59.4 kg), and 24 Meishan x White composite crossbred (M x Wc; 83.4 kg) barrows were allotted within genotype to a 16% CP corn-soybean meal diet or this basal diet + 20 ppm of ractopamine and allowed ad libitum access to feed for 52 d. No genotype x ractopamine interactions were detected (P greater than .05) in pigs for growth, lean cuts, ham and loin characteristics, leaf fat and visceral organ weights, fasting whole-animal heat production, and carcass traits except longissimus muscle area (LMA). The LMA was increased by ractopamine in D x Wc and M x Wc pigs (P less than .05) but not in M pigs. Compared with D x Wc and M x Wc pigs, M pigs had lower ADG, ADFI, and gain to feed ratio (G/F), shorter carcasses, and lower dressing percentage, LMA, predicted amount of muscle, weights of trimmed picnic, loin, and ham cuts, percentage of ham lean, and CP in ham lean, but heavier liver, kidneys, pancreas, and entire gastrointestinal tract with greater percentage of ham fat and ham bone (P less than .05). The M x Wc pigs had lower ADG, G/F, dressing percentage, LMA, amount of muscle, weights of trimmed cuts, and percentage of ham lean but heavier lungs, pancreas, stomach, and large intestine than did D x Wc pigs (P less than .05). Supplemental ractopamine increased ADG, G/F, dressing percentage, amount of muscle, trimmed loin weight, percentage of ham lean, and CP in ham lean and decreased weights of heart, lungs, kidneys, and pancreas in pigs (P less than .05). Neither genotype nor ractopamine had any effect on 4- to 24-h postprandial whole-animal heat production of pigs (P greater than .05). These results indicate that ractopamine will improve growth performance and carcass leanness in pure- and crossbred Meishan pigs.  相似文献   

13.
Knowledge of breed effects on carcass and pork quality traits is required to develop commercial crossbreeding programs that emphasize product quality. A 2 x 2 diallel mating system involving Landrace and Duroc pigs was used to estimate individual heterosis, direct breed effects and reciprocal cross differences for post-weaning growth, real-time ultrasound, carcass, and pork quality traits. Data from 5,649 pigs and 960 carcasses representing 65 and 49 sires, respectively, were analyzed assuming animal models. Duroc-sired pigs had 2.1 cm shorter carcasses with 7.3 mm less 10th rib backfat (BF), 4.4 cm2 larger longissimus muscle area (LMA), yielded 2.1 kg more estimated fat standardized lean (FSL), gained 16.5 g more estimated lean per day of age (LDOA), and had 1.0% less water (PWAT) and 1.9% more intramuscular fat (IMF) in the longissimus muscle than did Landrace-sired pigs (P less than .01), adjusted to an off-farm live weight of 111 kg. Reciprocal cross differences were detected for BF, LMA, FSL, LDOA and for subjective marbling, firmness, and muscling scores (P less than .01). Durocsired F1 barrows had 6.3 mm less BF and 5.9 cm2 larger LMA, yielded 3.2 kg more FSL, gained 22.3 g more LDOA, and had less marbling in the longissimus muscle and heavier ham muscling than reciprocal cross barrows. Heterosis estimates (P less than .05) were 27.6 g/d (3.2%) for ADG, -5.8 d (-3.6%) for off-test age, 2.7 cm (3.4%) for carcass length, 1.5 kg (7.2%) for FSL, 14.7 g (5.7%) for LDOA, -.07 (-3.6%) for muscle color, -.5% (-13.2%) for IMF, and .3% (.3%) for PWAT. Breed effects were not detected (P greater than .10) for muscle pH, cooking loss, shear value, and water-holding capacity or for eating quality traits. Reciprocal cross differences suggest an advantage in using the Duroc as a terminal sire, but improved carcass composition and higher intramuscular fat did not seem to affect eating quality traits.  相似文献   

14.
An 8-wk study of the effects of CLA, rendered animal fats, and ractopamine, and their interactive effects on growth, fatty acid composition, and carcass quality of genetically lean pigs was conducted. Gilts (n = 228; initial BW of 59.1 kg) were assigned to a 2 x 2 x 3 factorial arrangement consisting of CLA, ractopamine, and fat treatments. The CLA treatment consisted of 1% CLA oil (CLA-60) or 1% soybean oil. Ractopamine levels were either 0 or 10 ppm. Fat treatments consisted of 0% added fat, 5% choice white grease (CWG), or 5% beef tallow (BT). The CLA and fat treatments were initiated at 59.1 kg of BW, 4 wk before the ractopamine treatments. The ractopamine treatments were imposed when the gilts reached a BW of 85.7 kg and lasted for the duration of the final 4 wk until carcass data were collected. Lipids from the belly, outer and inner layers of backfat, and LM were extracted and analyzed for fatty acid composition from 6 pigs per treatment at wk 4 and 8. Feeding CLA increased (P < 0.02) G:F during the final 4 wk. Pigs fed added fat as either CWG or BT exhibited decreased (P < 0.05) ADFI and increased (P < 0.01) G:F. Adding ractopamine to the diet increased (P < 0.01) ADG, G:F, and final BW. The predicted carcass lean percentage was increased (P < 0.05) in pigs fed CLA or ractopamine. Feeding either 5% fat or ractopamine increased (P < 0.05) carcass weight. Adding fat to the diets increased (P < 0.05) the 10th rib backfat depth but did not affect predicted percent lean. Bellies of gilts fed CLA were subjectively and objectively firmer (P < 0.01). Dietary CLA increased (P < 0.01) the concentration of saturated fatty acids and decreased (P < 0.01) the concentration of unsaturated fatty acids of the belly fat, both layers of backfat, and LM. Ractopamine decreased (P < 0.01) the i.m. fat content of the LM but had relatively little effect on the fatty acid profiles of the tissues compared with CLA. These results indicate that CLA, added fat, and ractopamine work mainly in an additive fashion to enhance pig growth and carcass quality. Furthermore, these results indicate that CLA results in more saturated fat throughout the carcass.  相似文献   

15.
Carcass and live measurements of 45 barrows were used to evaluate the magnitude of ractopamine (RAC) treatment prediction biases for measures of carcass composition. Barrows (body weight = 69.6 kg) were allotted by weight to three dietary treatments and fed to an average body weight of 114 kg. Treatments were: 1) 16% crude protein, 0.82% lysine control diet (CON); 2) control diet + 20 ppm RAC (RAC16); 3) a phase feeding sequence with 20 ppm RAC (RAC-P) consisting of 18% crude protein (1.08% lysine) during wk 1 and 4, 20% crude protein (1.22% lysine) during wk 2 and 3, 16% crude protein (0.94% lysine) during wk 6, and 16% crude protein (0.82% lysine) during wk 6. The four lean cuts from the right side of the carcasses (n = 15/treatment) were dissected into lean and fat tissue. The other cut soft tissue was collected from the jowl, ribs, and belly. Proximate analyses were completed on these three tissue pools and a sample of fat tissue from the other cut soft tissue. Prediction equations were developed for each of five measures of carcass composition: fat-free lean, lipid-free soft tissue, dissected lean in the four lean cuts, total carcass fat tissue, and soft-tissue lipid mass. Ractopamine treatment biases were found for equations in which midline backfat, ribbed carcass, and live ultrasonic measures were used as single technology sets of measurements. Prediction equations from live or carcass measurements underpredicted the lean mass of the RAC-P pigs and underpredicted the lean mass of the CON pigs. Only 20 to 50% of the true difference in fat-free lean mass or lipid-free soft-tissue mass between the control pigs and pigs fed RAC was predicted from equations including standard carcass measurements. The soft-tissue lipid and total carcass fat mass of RAC-P pigs was overpredicted from the carcass and live ultrasound measurements. Prediction equations including standard carcass measurements with dissected ham lean alone or with dissected loin lean reduced the residual standard deviation and magnitude of biases for the three measures of carcass leanmass. Prediction equations including the percentage of lipid of the other cut soft tissue improved residual standard deviation and reduced the magnitude of biases for total carcass fat mass and soft-tissue lipid. Prediction equations for easily obtained carcass or live ultrasound measures will only partially predict the true effect of RAC to increase carcass leanness. Accurate prediction of the carcass composition of RAC-fed pigs requires some partial dissection, chemical analysis, or alternative technologies.  相似文献   

16.
Mature beef cows (n = 88) were slaughtered to determine the influence of body condition score (BCS) on carcass and live animal value. Cows were weighed and assigned a BCS (9-point scale), 24 h before slaughter. Hide and by-products weights were recorded during harvest. After a 48-h chill period, the right side of each carcass was fabricated into boneless subprimal cuts, minor cuts, lean trim, fat, and bone. Weights were recorded at all stages of fabrication. Carcass values (U.S.$/100 kg of hot carcass weight) were calculated for U.S. Utility and U.S. Cutter grades, as well as for the Utility/Cutter mix for each BCS. Gross value included the carcass value and the value of the hide and byproducts, whereas net value was calculated after harvest and fabrication costs and by-product value were considered. Live value (U.S.$/100 kg of live weight) was computed by dividing the net value by the animal's live weight 24 h before harvest. The value of the hide and by-products for BCS-2 cows was greater (P<.05) than for cows assigned a BCS of 3 through 8. Even though U.S. Utility carcasses from BCS-8 cows produced the least (P<.05) valuable subprimal cuts from the chuck, loin, and round, the gross and net values of BCS-8 cows were greater (P<.05) than those of BCS-3, 4, 5, and 6. Within the grade of U.S. Cutter, carcasses from BCS-6 cows had the highest (P<.05), and BCS-2 cows had the lowest (P<.05), gross and net values. Across the U.S. Utility/Cutter mix, cows designated with a BCS of 7 and 8 had greater (P<.05) gross and net values than cows assigned a BCS of 6, or lower. Live value increased linearly (P = .0002) from a low of $76.10/100 kg for BCS-2 cows to a high of $90.84/100 kg for BCS-7 cows. Carcasses from BCS-6 cows were relatively lean (8.4 mm of fat opposite of the longissimus muscle), and approximately 73% of the carcasses achieved a quality grade of U.S. Utility. Moreover, carcasses from BCS-6 cows had the highest total carcass values and live values comparable (P>.05) to BCS-7 cows. Information from this study can be used by the non-fed beef industry to establish a value-based marketing system. Data from this study would indicate that marketing cull beef cows at a BCS of 6 could optimize economic returns to both cow-calf producers and non-fed beef packers.  相似文献   

17.
One hundred beef carcasses were selected to represent the mix of cattle slaughtered across the United States. Selection criteria included breed type (60% British/continental European, 20% Bos indicus, and 20% dairy carcasses), sex class (beef and Bos indicus: 67% steers, 33% heifers; dairy: 100% steers), USDA quality grade (4% Prime, 53% Choice, and 43% Select), USDA yield grade (10% YG 1, 43% YG 2, 40% YG 3, and 7% YG 4), and carcass weight (steers: 272.2 to 385.6 kg, heifers: 226.8 to 340.2 kg). One side of each carcass was fabricated into boneless subprimals and minor cuts following Institutional Meat Purchase Specifications. After fabrication, subprimals were trimmed progressively of fat in .64-cm increments beginning with a maximum of 2.54 cm and ending with .64 cm. Linear regression models were developed for each individual cut, including fabrication byproduct items (bone, fat trim) to estimate the percentage yield of those cuts reported by USDA Market News. Strip loin, top sirloin butt, and gooseneck rounds from heifers tended to have a higher percentage yield at the same USDA yield grade than the same cuts from steers, possibly resulting from increased fat deposition on heifers. Percentage of fat trimmed from dairy steers was 2 to 3% lower than that from other sex-class/carcass types; however, due to increased percentage of bone and less muscle, dairy steers were lower-yielding. Fat trimmed from carcasses ranged from 7.9 to 15.6% as the maximum trim level decreased from 2.54 to .64 cm.  相似文献   

18.
This study was designed to evaluate growth performance, carcass cutting yield, and processing characteristics of boneless hams and bellies from finishing pigs fed diets containing 0, 5, 10, or 20 ppm of the phenethanolamine ractopamine hydrochloride (RAC). Sixty pigs were blocked by starting weight and randomly assigned to pens (four pigs/pen) within each of three blocks. Treatments were then randomly assigned to the pens to total six pens of the 0-ppm level and three pens each at the 5-, 10-, and 20-ppm RAC levels. Weight gain and feed consumption were monitored and animals were slaughtered by weight block after approximately 48 d on trial. Slaughter weight, ADG, and feed/gain were improved (P less than .05) for RAC treatments. Dressing percentage was higher and increased linearly (P less than .05) for RAC treatments. Carcass weight, length, leaf fat weight, backfat thickness, loin eye area, and color, marbling, and firmness of the longissimus were evaluated. The RAC-treated carcasses were heavier (P less than .05) and loin eye area increased linearly (P less than .05). One side of each carcass was fabricated using National Association of Meat Purveyors specifications. Trimmed hams and loins from the RAC treatments were heavier (P less than .05) than those from control animals. No differences (P greater than .05) in carcass cutting yield (percentage of trimmed primal cuts) were observed between treatments. However, trimmed hams and loins from the 20-ppm RAC treatment represented a greater (P less than .05) percentage of carcass weight than did those from control animals. Ractopamine did not affect raw belly or bacon characteristics (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The objective of this experiment was to determine if increasing lysine in the diets of immunologically castrated (IC) male pigs would increase percentage fat free lean and carcass cutting yields when compared with physical castrates. The anti-gonadotropin-releasing factor (GnRF) immunological product (Improvest, Pfizer Animal Health) is used worldwide to immunologically castrate entire male pigs to control boar taint and take advantage of the inherent ability of the entire male to deposit more muscle, less fat, and grow more efficiently than physically castrated males. The immunization process essentially allows the pig to grow as an entire male pig for most of its life and then removes any boar odor (boar taint) before slaughter. Reported lean meat advantages may also provide economic benefits to the domestic meat industry. Approximately 1,200 male pigs [physical castrates, IC males, and entire males] were each assigned to 1 of 4 diet programs which differed in lysine content. In each case, lysine was fed in a conventional step-down program that culminated with the following concentrations in the late finishing diet: physical castrates fed low lysine (0.7%), IC fed low lysine (0.7%), IC fed low/medium lysine (0.8%), IC fed medium/high lysine (0.9%), IC fed high lysine (1.0%), and entire males fed high lysine (1.0%). At 25 wk of age (5 wk post-second injection), pigs were individually weighed and the 2 pigs (n=96) in each pen closest to the median pig BW were selected and slaughtered. The right side of each carcass was dissected into soft tissue, skin, and bone. Proximate composition was determined on the soft tissue to determine percentage fat-free lean. The left side of each carcass was weighed and initially fabricated into ham, loin, belly, and whole shoulder. Each primal piece was weighed again and further fabricated into respective subprimal cuts. Immunological castration did not change (P>0.05) shear force values or ultimate pH when compared with either physical castrates or entire males. Marbling appeared to decrease as dietary lysine was increased among IC males. As expected, IC males had a greater (P<0.05) percentage fat-free lean than physical castrates but less (P<0.05) than entire males. Immunologically castrated males fed diets with medium/high and high lysine had greater (P<0.05) lean cutting yields and carcass cutting yields than physical castrates. Lean cutting yield and carcass cutting yields appeared to increase as dietary lysine was increased among IC males. Overall, immunological castration improved carcass cutability, increased percentage fat free lean, and had no effect on pork quality when compared with physical castrates.  相似文献   

20.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as adjusted 12th rib fat thickness. After USDA carcass grade data collection, one side of each carcass was fabricated into boneless primals/subprimals and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the bottom sirloin butt, tritip, and tenderloin, which were trimmed of all fat. Four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at different fat trim levels (.64, 1.27, and 2.54 cm) as influenced by sex class, frame size, muscle score, and adjusted 12th rib fat thickness. Carcass component values, total carcass value, carcass value per 45.36 kg of carcass weight, and live value per 45.36 kg of live weight were calculated for each phenotypic group and external fat trim level. Carcass fatness and muscle score had the most influence on live and carcass value (per 45.36 kg weight basis). Carcasses with .75 and 1.50 cm of fat at the 12th rib were more valuable as the trim level changed from 2.54 cm to .64 cm; however, for carcasses with 2.25 cm of fat at the 12th rib, value was highest at the 2.54 cm trim level. Value was maximized when leaner cattle were closely trimmed. There was no economic incentive for trimming light-muscled or excessively fat carcasses to .64 cm of external fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号