首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard evaluation procedures, based on field measurements and statistical, hydraulic models, have been developed for assessing irrigation systems performance. However, given the diverse nature of the irrigation methods, it is not possible to use a unique evaluation procedure. Ideally, variables would be measured at every point throughout the field under study, but that is clearly impractical. Instead, measurements are taken of selected samples, or irrigation models are used to predict field-wide distributions of the variables. In this paper, irrigation models for trickle, sprinkler and furrow irrigation are used to assess how well the irrigation performance indicators generated by standard procedures match those generated by whole-field simulations. Six performance indicators were used: distribution uniformity, uniformity coefficient of Christiansen, application efficiency, deep percolation ratio, tail water ratio and requirement efficiency. The analysis was applied to systems typical of cotton crops in Southern Spain. The results show that the procedure used to determine performance indicators in trickle irrigation provides good estimates of the whole field performance. The procedure used in sprinkler irrigation is also acceptable, but yields variable results. Finally, the standard procedure used for furrow irrigation produces biased, highly variable results and overestimates distribution uniformity.  相似文献   

2.
To improve water saving and conservation in irrigated agriculture, a range of field evaluation experiments was carried out with various furrow irrigation treatments in cotton fields to estimate the possibilities of improving furrow irrigation performances under conditions of Central Fergana Valley, Uzbekistan. The research consisted in comparing surge and continuous-flow in long furrows and adopting alternate-furrow irrigation. The best results were achieved with surge-flow irrigation applied to alternate furrows. Field data allowed the calibration of a surface irrigation model that was used to identify alternative management issues. Results identified the need to better adjust inflow rates to soil infiltration conditions, cut-off times to the soil water deficits and improving irrigation scheduling. The best irrigation water productivity (0.61 kg m−3) was achieved with surge-flow on alternate furrows, which reduced irrigation water use by 44% (390 mm) and led to high application efficiency, near 85%. Results demonstrated the possibility for applying deficit irrigation in this region.  相似文献   

3.
Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices.  相似文献   

4.
Performance evaluation of irrigation systems is a key issue in the field of irrigation system management. This paper presents a Ratio of Similar Priority (RSP) method for irrigation systems performance evaluation. The time series data from the Shi-jin Irrigation District in northern China is used to test the method. The results show that this RSP method can be used to identify the main temporal changes of irrigation system performance. It offers clear and quantified results in terms of irrigation system performance evaluation.  相似文献   

5.
隔沟交替灌溉是以通过改善作物根信号功能、光合作用、蒸腾作用和气孔导度等生理特性,进而提高作物产量为目的的一项高效节水灌溉技术。介绍了隔沟交替灌溉技术发展概况,系统阐述隔沟交替灌溉的作用机理,主要包括根系系统的吸收补偿功能、农田土壤水分消耗和水分利用效率变化3个方面,明确了该技术在作物栽培中的应用效果与发展前景。隔沟交替灌溉可显著提高作物产量和水分利用效率,在优质高产节水型农业生产中具有重要意义。   相似文献   

6.
不同沟灌条件下土壤入渗参数的估算   总被引:9,自引:5,他引:4  
土壤入渗特性是决定沟灌灌水性能的重要参数之一。根据田间实测资料,采用水量平衡原理,利用In filt v5软件,对夏玉米田常规沟灌、固定隔沟灌和交替隔沟灌溉条件下田间土壤入渗参数的简易试验估算方法进行了研究。结果证明,用提出的方法估算不同沟灌方式下的土壤入渗参数简易可行,估算得到的水流推进曲线与利用实测资料拟合的曲线几乎完全重合;不同沟灌方式之间由于表层土壤干燥度及水平方向上的吸力梯度存在差异,估算得到的土壤入渗参数亦有所不同,表明沟灌方式不同对土壤入渗参数的确定会产生一定的影响。  相似文献   

7.
土壤入渗特性和田面糙率的变异性对沟灌性能的影响   总被引:2,自引:0,他引:2  
以杨凌区粘壤土和砂壤土区域进行的大田沟灌试验为基础,在假定各灌水沟内部土壤入渗特性和糙率均一的条件下,重点分析各灌水沟之间土壤入渗参数和田面糙率的不同组合对沟灌水流运动过程和灌水质量的影响,结果表明土壤入渗特性的变异性对沟灌水流推进过程和灌水质量指标影响较大,在模拟时必须充分考虑;而田面糙率的变异性对沟灌水流推进过程和灌水质量指标影响较小,可采用田块糙率均值代替各灌水沟的糙率。经实例验证,水流推进过程相对误差为7.28%,灌水效率、灌水均匀度和储水效率模拟值与实测值误差分别为5.74%、6.18%和4.07%,结果表明其模拟效果较好。  相似文献   

8.
The worldwide need to improve water use efficiency within irrigated agriculture has been recognised in response to environmental concerns and conflicts in resource use. Within the Australian cotton industry, the imperative to reduce water use and optimise irrigation management through the understanding of risk, using information generated by computerised decision aids was identified and subsequently developed into the HydroLOGIC irrigation management software. This paper summarises the attributes of the HydroLOGIC irrigation management software, with particular emphasis on functionality and its application to irrigation decisions within the Australian cotton industry. The software development process is documented to provide direction for future software application initiatives, with particular emphasis on a process of user feedback, evaluation and support requirements providing direction to software development. On-farm experiments throughout the development period allowed the validation of internal software logic, irrigator decision processes, and the OZCOT cotton growth model. The software demonstrated the ability to improve yield and water use efficiency by optimising strategic and tactical irrigation decisions in the Australian furrow irrigation cotton production system. In 7 of the 11 on-farm experiments conducted, the use of HydroLOGIC helped improve overall field water use efficiency by optimising the timing of irrigation events or by indicating further irrigations would not provide yield or maturity benefits. The paper also presents useful insights into the development of software targeted for irrigation utilising in-field measurements of soil water, crop growth and a crop growth simulation model.  相似文献   

9.
Water conservation strategies for center pivot and furrow irrigation in the Central Platte Valley of Nebraska were evaluated using computer simulation. Irrigation requirements, grain yield, return flow and net depletion (gross irrigation minus return flow) of groundwater were simulated for a period of 29 years for Hord and Wood River silt loam soils. Grain yields were simulated for a typical corn variety for non-limiting water supplies (maximum attainable yield), for two levels of deficit irrigation (irrigation limited to certain growing periods), and for dryland conditions. Additional simulations were performed for a short-season corn, grain sorghum, and soybeans. The impacts of tillage practices on water conservation were also investigated.Center pivot irrigation on the Hord silt loam required 75–125 mm/year less water application than furrow irrigation. For the Wood River silt loam, water applications were the same for both irrigation systems. Applied water depths were reduced by an additional 75–125 mm using deficit irrigation with only a small reduction in yield. Return flow to the groundwater was small for well-managed pivots but high for some furrow irrigation systems based on the assumption that all deep percolation returns to the aquifer in the Central Platte Valley. Net depletion (gross irrigation minus return flow) of the groundwater for a center pivot with LEPA was 50 mm (17%) less than a center pivot with impact sprinklers. Ridge till had a net depletion 50 mm (25%) less than conventional tillage (double disk, plant) for furrow systems.  相似文献   

10.
Summary To determine if drip irrigation increases fertilizer requirements and/or the efficiency of utilization compared to furrow irrigation, growth and nitrogen uptake were measured in a four-year experiment comparing surface (SD) and buried (BD) methods of drip irrigation with furrow irrigation (F) of cotton. The soil was a slowly-permeable cracking grey clay (vertisol) at Narrabri, N.S.W Drip-irrigated treatments were maintained at a deficit of 45 mm below the fully-irrigated soil water content, while F was irrigated when the deficit reached about 90 mm. Nitrogen (N) fertilizer was applied weekly with drip irrigation to BD and SD over the first half of the season, and as a conventional single application to F before sowing. Leaf area index (LAI), dry matter and N uptake were influenced more by season than by method of irrigation. LAI during boll filling averaged 2.4 and was 10% greater in BD than in SD and F. Final dry matter averaged 988 g m–2 and was 10% greater in BD and SD than in F. The efficiency of conversion of solar radiation into dry matter averaged 0.55 g MJ–1; lint yield as a fraction of dry matter averaged 0.18; neither parameter was consistently influenced by the method of irrigation. Total N uptake ranged from 97 to 170 kg ha–1 and was influenced by irrigation method in one season only, when it was less in F than in SD and BD. N was often taken up later under drip irrigation than under F: there was up to 40% less N taken up by SD than F in the early flowering stage. The delay was associated with later application of N to BD and SD compared with F, and the application of N to the surface of alternate furrows of SD. Plant factors such as root ageing and competition between roots and bolls, were also implicated. We conclude that all of the N should be applied to drip-irrigated cotton on these soils by mid flowering, and that some of the N should be applied in the soil before sowing.  相似文献   

11.
不同沟灌方式对玉米光合速率和蒸腾速率的影响   总被引:2,自引:0,他引:2  
交替隔沟灌溉和固定隔沟灌溉玉米的蒸腾速率较常规灌溉明显下降,光合速率有降低但降幅不大。交替隔沟灌溉玉米的叶片水分利用效率最高。随着土壤含水率的增大,不同处理玉米的光合速率和蒸腾速率都趋于增大。交替方式和固定方式玉米的光合速率增幅比常规灌溉大,叶片水分利用效率大于常规灌溉。  相似文献   

12.
微地形及沟断面形状变异性对沟灌性能影响的试验研究   总被引:1,自引:0,他引:1  
针对沟灌,研究了沟底起伏状况和沟横断面形状的空间变异性对灌水质量的影响。通过分析在河北吴桥开展的棉花沟灌试验数据,描述了灌水沟断面形状和沟底高程二因素的空间分布特征。采用田面平整精度Sd值作为评价沟底高程变化程度的指标,确定其对灌水均匀度和灌水效率的影响;采用断面形状参数p2描述灌水沟断面形状,以p2的标准差反映其空间变异性对地表水流运动和灌水质量的影响。结果表明,灌水均匀度和灌水效率均随沟底高程标准差的增大而减小;水流推进速度随断面形状参数p2标准差的增大而降低,灌水均匀度和灌水效率随p2标准差的增大而减小。因此,微地形和灌水沟断面空间变异性,对灌水均匀度和灌水效率均有显著的影响。  相似文献   

13.
A spreadsheet model was developed to evaluate the performance of furrow irrigation that accounts for soil variability and requires few field measurements. The model adjusts an advance trajectory to three (advance distance, advance time) points and, similarly, it adjusts a recession trajectory to three (recession distance, recession time) points. The head of the furrow (distance = 0) is one of the points used to adjust both trajectories. It then calculates the parameters of the infiltration equation using the two-point method (based on the volume balance equation with assumed surface shape parameters). The model gives the option to enter an estimate of the soil infiltration variability in order to account for this variation when calculating irrigation performance indicators. The combination of variance technique was used for this purpose. A set of irrigation performance indicators (distribution uniformity, application efficiency, tail water ratio, deep percolation ratio and deficit coefficient) is calculated, assuming that the infiltrated water follows a normal frequency distribution. To illustrate the evaluation method, it was applied to three irrigation events conducted on a sunflower field, with 234 m long furrows spaced 0.75 m apart. The evaluations were performed in two 3-furrow sets. The application efficiency was satisfactory in the first irrigation, but low in the other two. Uniformity was high in all three irrigations. The performance indicator that was most affected by soil variability was distribution uniformity. Considering soil spatial variability was important for more realistic determination of the infiltrated water distribution, and therefore of the deep percolation, but it had less importance for the determination of the application efficiency, due to the relevance of runoff in our field application.  相似文献   

14.
Several parameters that measure the irrigation performance were analyzed for their relation to surface-irrigation design variables and yield. Application efficiency (AE), requirement efficiency (RE), uniformity coefficient (UC), deficit efficiency distribution (DED) and requirement distribution efficiency (RDE) were examined with respect to surface irrigation design variables (inflow discharge, length of the run, and time of irrigation cutoff). RE, RDE and UC were correlated with relative yield. Surface-irrigation models were used to simulate furrow and border irrigation and to determine the value of the performance irrigation parameters. A linear crop-water-production function was used to estimate yield. The RE and RDE were very well correlated with the design variables in border and furrow irrigation, and they were the parameters best correlated with the relative yield. The UC was not correlated with the design variables and gave a poor correlation with the relative yield. The AE was well correlated with the design variables.  相似文献   

15.
Empirical functions for dependent variables in cutback furrow irrigation   总被引:1,自引:0,他引:1  
Water scarcity and the high consumption of water resources in agriculture have strengthened the need to manage and optimize irrigation systems. Among surface irrigation systems, furrow irrigation with cutback is commonly used because of its potentially higher irrigation efficiency, lower costs and relative simplicity. The performance of this system is affected by various management and design variables, and hence different management scenarios should be evaluated before it is applied in practice. For this purpose, empirical functions for the performance evaluation indices are useful. This paper employs sensitivity, dimensional and regression analyses in the development of empirical functions for application efficiency, deep percolation, runoff and distribution uniformity. The proposed functions were evaluated using a numerical zero-inertia model and field measured data. Coefficients of determination for E a, D r, R r and U cc were calculated to be 0.90, 0.91, 0.90 and 0.84, respectively. These values indicate that the proposed functions enable the performance indices to be predicted satisfactorily. Values for the indices calculated using the developed dimensionless functions showed a very good agreement with both the outputs of the zero-inertia model and values calculated from measured field data. As the functions were general (not site and irrigation specific) and explicit, they could prove to be of practical significance in both conventional and optimal design and management of free-draining, graded furrow irrigation systems with cutback flows.
M. NavabianEmail:
  相似文献   

16.
Drip irrigation systems and irrigation strategies like deficit irrigation (DI) and partial root drying (PRD) are potential water saving irrigation systems and strategies. This paper analyses the Serbian farmer's economic incentive to use these water saving systems and strategies instead of the present sprinkler irrigation. The analysis is a partial budgeting analysis, based on irrigation application efficiency from the literature, standard figures for power requirements, pumping efficiency and friction losses for various sources of water and pressure requirements, yields and water use from recent Serbian field experiments, as well as prices and cost structures for potatoes collected in the Belgrade region. The analysis shows that changing the present system and strategy can save a significant amount of water (almost 50%). At the same time, however, irrigation costs are also significantly increased (more than doubled), and the total production costs are increased by 10% (deficit drip irrigation) and 23% (PRD). Increased taxes on water, investment subsidies, increased energy prices, and an increased yield or yield quality may provide incentives for farmers to change to new systems and strategies. The analysis indicates that a 0.80 to 1.97 € m−3 water tax is needed to make deficit drip irrigation and PRD profitable. The socioeconomic cost of providing water for irrigation and the alternative value of saved water are probably not that high. Thus, water taxation may not be a socioeconomic efficient means to improve the irrigation water productivity of Serbian potato production. Drip irrigation and PRD may, however, also increase the yield quality, and a 10-23% quality premium (price increase) is needed to make deficit drip irrigation and PRD profitable.  相似文献   

17.
The objective of this study is to simulate water and nitrogen transfers under two furrow irrigation technologies (every furrow irrigation (EFI) and alternative furrow irrigation (AFI)) on Chromic Luvisol in Sofia region, Bulgaria. A bi-dimensional water and solutes transport modeling approach, HYDRUS-2D model [Simunek, J., Sejna, M., Van Genuchten, M.T., 1999. The HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solutes transport parameters. Agron Abstr. 357] is adopted in order to consider the technology of irrigation and fertilization. The model is calibrated in six steps using detailed data observed in two cropped lysimeters. The data consist of water and nitrogen (N) profiles below ridge and furrow bed, precipitation, drainage and water/N uptake by plant. Hydrological components of the soil are derived from laboratory: water retention data (step (i)) and adjusted to field conditions when EFI is approximated by one-dimensional (step (ii)). Then a two-dimensional water flow is adopted in model simulations for parameter calibration and verification, under EFI (step (iii)) and under AFI technology (step (iv)). This model calibration and validation is then used to calibrate the solute transport parameters, that is the aim of step (v) and step (vi). EFI and particularly AFI technologies points out the necessary 2D model using for the N transfer simulation under specific fertilizer applications. Thus, this calibrated model allows predicting the impact of furrow irrigation practices and distribution uniformity on drainage and nitrogen leaching under the studied conditions.  相似文献   

18.
Field evaluation of surface irrigation systems play a fundamental role to determine the efficiency of the system as it is being used and to identify management practices and system configurations that can be implemented to improve the irrigation efficiency. This study evaluated the performance of an ‘improved’ traditional small-scale irrigation practice at Adada, a representative small-scale irrigation practice in Dire Dawa Administrative Council, Eastern Ethiopia. In order to determine numerical values of performance measures, certain parameters were measured/observed before, during and after an irrigation event while farmers are performing their normal irrigation practice. These parameters include: irrigated crop, irrigation method, stream size, cutoff time, soil moisture deficiency, and field size, shape and spacing. The results showed that the irrigation water applied to a farmer's plot during an irrigation event/turn was generally higher than the required depth to be applied per event. Since the irrigation method used was end-dyked, the major cause of water loss was due to deep percolation. The deep percolation loss was 32% in sorghum, 57% in maize, and 70% in tomato and potato fields. The type of irrigation system used, the ridged irrigation practice and the poor irrigation scheduling in the study sites were the main problems identified in the management and operations of the schemes. The following corrective measures are recommended to improve the system: (1) farmers should regulate the depth of irrigation water they apply according to the type of crop and its growth stage, change the field irrigation system and/or configuration especially for shallow rooted row crops, to furrow system, (2) guidance and support to farmers in developing and introduction of appropriate irrigation scheduling, and (3) future development interventions towards improvement of traditional irrigation practices should also focus in improving the on farm irrigation systems in addition to improving physical infrastructure of the scheme.  相似文献   

19.
交替隔沟灌溉下玉米根长密度分布及水分利用   总被引:1,自引:0,他引:1  
为了探明交替隔沟灌溉和常规沟灌条件下玉米根长密度的分布规律及水分利用效率(WUE),研究了2种沟灌方式下玉米根长密度的空间分布和水分利用情况。结果表明,玉米根长密度在根区水平向和垂向呈指数分布。交替隔沟灌溉促进了玉米根系的水平向伸展和下扎深度,常规沟灌在垄位的大密度根系分布集中在20~60cm。交替隔沟灌溉增大了根系下扎深度,有利于根系吸收深层土壤水分,在非充分供水条件下提高了作物的水分利用效率,交替隔沟灌溉水分利用效率较常规沟灌提高5%以上。  相似文献   

20.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号