首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

2.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

3.
Monilinia fructicola, the most destructive pathogen of the genus Monilinia, has recently been introduced into Serbia and many other European countries. Since then, many studies have been conducted to evaluate the characteristics of Monilinia species that have a role in the establishment and survival of the pathogen in new areas. The present study assessed the capacity of M. fructicola to repress and replace Monilinia laxa in Serbia based on: fungicide sensitivity, growth rate and aggressiveness at different temperatures, as well as frost hardiness of the isolates of both species. The results showed that the isolates of M. fructicola, compared to M. laxa, were significantly less sensitive to the following fungicides: iprodione, tebucanozole, chlorothalonil, azoxystrobin, fluopyram, and boscalid. In addition, M. laxa isolates exhibited little variation in sensitivity to all of the tested fungicides, whereas M. fructicola isolates displayed a wide range of sensitivity. The temperature of 5°C favored M. laxa growth and aggressiveness, while at 30°C M. fructicola grew faster and had higher lesion expansion rate. These results support an assumption that M. fructicola will continue to spread in Serbian orchards in coming years, particularly on stone fruits harvested during hot summer weather.  相似文献   

4.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

5.
Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.  相似文献   

6.
Fifty bacterial isolates obtained from compost were tested in vitro against the causal agents of green mould in Agaricus bisporus. Isolate B-38 which induced 48.08% in vitro growth inhibition of T. harzianum T54 and 52.25% of T. aggressivum f. europaeum T77 was identified as Bacillus subtilis, based on 16S rDNA sequence and used in mushroom growing room experiments. B. subtilis B-38 did not decrease mycelial growth rate of Agaricus bisporus A15 in mushroom compost in glass tubes. After applying prochloraz-manganese, B. subtilis B-38 and B. subtilis QST 713, no significant differences in BE values among treatments were found concerning both total yield and the weight of healthy mushrooms. Statistical analyses showed that only inoculation significantly influenced the healthy mushroom yield. In plots inoculated with T. harzianum T54 disease incidence was significantly lower after treatments with prochloraz-manganese (11.81%), B. subtilis QST 713 (12.26%) and B. subtilis B-38 (14.19%) compared to the control (28.16%), as well as in plots inoculated with T. aggressivum f. europaeum T77 11.88%, 12.2% and 15.03%, respectively, in comparison with the control (23.47%). Statistically significant differences were not found among the efficacy values of tested bio-fungicides based on B. subtilis and the commercial fungicide prochloraz-manganese suggesting the use of B. subtilis B-38 and B. subtilis QST 713 as good alternatives to chemical fungicides.  相似文献   

7.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

8.
An ethyl acetate extract of a culture filtrate (ECF) from an unidentified fungal isolate O821 was evaluated for antifungal activity against the rice pathogen Magnaporthe oryzae. The O821-ECF significantly inhibited spore germination, appressorium formation, and mycelial growth of M. oryzae, and its antifungal activity was heat-stable. It also significantly suppressed the number and size of blast lesions. In an analysis of the ITS sequence of this isolate, it shared similarities with species of the fungus Biscogniauxia. These results suggest that isolate O821 of the genus Biscogniauxia produces a heat-stable antifungal compound(s) in its culture filtrate.  相似文献   

9.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

10.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

11.
Plant growth promoting Bacillus subtilis MSS9 and Bacillus licheniformis MSS14 were isolated from the tomato rhizosphere. These isolates were capable of inhibiting the fungal pathogen, Fusarium oxysporum f. sp. lycopersici causing fusarium wilt in tomato, tested by dual culture method and by mycolytic enzyme production. The isolates have the capacity to form biofilm on the microtitre plate. Scanning electron microscopy revealed good colonization capacity of Bacillus licheniformis MSS14 on tomato plant root as compared to Bacillus subtilis MSS9, pot experiments were also analyzed to study the effects of both rhizobacterial cultures on pathogen development and plant growth. It was observed that MSS14 reduces the incidence of Fusarium oxysporum f. sp. lycopersici in tomato and there was significant increase in vegetative parameters like root length, shoot length, plant wet weight, dry weight and chlorophyll content after which indicates that the root colonization property of the culture MSS14 helps in enhancing the biocontrol capacity against pathogen than that of MSS9.  相似文献   

12.
Two hymenopteran parasitoids of the cactus scale Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on Opuntia ficus-indica (L.) Mill. (Cactaceae) are recorded in Greece. Aphytis debachi Azim, 1963 (Aphelinidae) is first recorded for Europe and Plagiomerus diaspidis Crawford, 1910 (Encyrtidae) is first recorded for Greece. Preliminary data on phenology and natural enemies of the scale D. echinocacti on O. ficus-indica are presented. Parasitism of D. echinocacti by P. diaspidis reached 86% in southern Greece (Kalamata) and parasitism by A. debachi reached 9.3% and 12% in Kalamata and Athens, respectively. Two predators, Cybocephalus fodori Endrödy-Youga (Coleoptera: Nitidulidae) and a mite species (Prostigmata: Bdellidae), were found to be associated with D. echinocacti.  相似文献   

13.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

14.
Botrytis cinerea is a fungal pathogen that limits rose production and commercialization worldwide. Therefore, we evaluated a novel postharvest treatment against Botrytis cinerea in roses (Rosa sp. cv Vendela) using coating bases and antifungal agents of natural origin. Aloe vera pulp, cassava starch and gelatin were used as coating bases. Oregano essential oil (Origanum vulgare), thyme essential oil (Thymus vulgaris) and chitosan were used as natural antifungal agents. The coating bases were evaluated in different concentrations to observe effects of toxicity and opening diameter in rose buds. Gelatin and cassava starch coatings inhibited rose opening and showed petal damage in all concentrations tested. However, Aloe vera pulp at 25% allowed normal buds’ opening and no damage was observed, indicating that Aloe vera could be an ideal coating base for rose postharvest treatments. During in vitro assays, natural antifungal agents efficiently inhibited Botrytis cinerea growth in the concentrations tested. Further, mixture treatments of Aloe vera pulp (25%) with oregano essential oil (1%), thyme essential oil (0.1%) and chitosan (0.1%) showed independently neither damage nor opening inhibition in rose buds. Selected combinations of Aloe vera pulp and natural antifungal agents were applied in roses infected with Botrytis cinerea to evaluate their control of this pathogen. Unfortunately, the selected combinations did not reduce pathogen growth during postharvest treatments since they were similar to untreated controls. Further research has to be performed to find ideal combinations with Aloe vera that could inhibit B. cinerea during postharvest treatments in roses.  相似文献   

15.
This investigation examines the effects of pH and titratable acidity on the growth and developments of a strain of Monilinia laxa (Aderhold & Ruhland) at seven different pH levels in Potato Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in vitro, was affected, by the pH (2.4–11.52) amended nutrient media. M. laxa exhibited variation in its growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate acidic conditions for optimum performance. In the in vitro analysis, there was mycelia growth at pH 2.40 to 8.84, while pH 11.52 did not support any mycelia growth. There was a continuous and stable increase in weight of fruit as it developed whereas the fruit size increased, then decreased and finally increased as the fruit develops. The acidity dynamics exhibited a non-sinusoidal waveform through the growth and development of the fruit. In all these characteristic variations, M. laxa did not develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity.  相似文献   

16.
Compared to conventional planting material, micropropagated plantlets are highly susceptible to Fusarium wilt because they are free from beneficial root inhabitants. We aimed to introduce mixtures of beneficial microbes in the plantlets in the rooting medium under in vitro conditions rather than by field applications. Endophytes and rhizobacteria from different banana cultivars and plantation areas were screened and characterized. Under in vitro conditions, banana tissue culture plantlets were bacterized with the prospective endophytes, Bacillus subtilis strain EPB56 and EPB10 and the rhizobacteria, Pseudomonas fluorescens strain Pf1 and effects of in vitro bacterization were investigated against Fusarium oxysporum f. sp. cubense race 1 under glasshouse and field conditions. Inoculation of bananas during micropropagation allowed for the omission of minerals and salts as well as vitamins from the growing media while resulting in plantlets close to double size compared to the controls with full strength media. All endophyte and rhizobacteria strains tested resulted in significant reductions in Fusarium infection in the glasshouse and field and in significantly better plant growth. The three-way combination of bacteria resulted in 78% disease reduction and more than doubled the yields compared to the untreated controls across two field experiments. Three-way inoculation led to yields of 23 and 24 kg/ bunch compared to chemical disease control (13; 15 kg/bunch) and untreated controls (10; 13 kg/bunch) in the two field experiments. Under glasshouse conditions, activity of defence enzymes was significantly increased by all inoculation treatments. Inoculation in vitro led to the establishment of the microorganisms in the plant system before delivering to the farming community. Micropropagation combined with the establishment of a beneficial microbial consortium should complement the micropropagated plants for easier adaptation under field conditions.  相似文献   

17.
Seed treatments with essential oils (from savory and thyme) and biocontrol agents (Pseudomonas spp. and Fusarium oxysporum) have been evaluated in vivo after dry hot air treatments against Fusarium oxysporum f. sp. basilici on basil seeds. The savory and thyme essential oils showed a significant pathogen control activity because of their innate antifungal activity and because of the seed application method, but the dry hot pre-treatment did not show any obvious effect on the performance of the essential oil treatments. The dry heat treatment improved the Pseudomonas seed dressing effect against F.oxysporum f. sp. basilici, and showed important reductions in plant infection and the disease index on the treated seed plants, without any negative effect on seed germination. However, the pathogen control provided by the heat treatments combined with the application of the biocontrol agents never reached the same performance as the chemical treatments considered as the reference. Thus, short dry heat treatments on basil seeds have been shown to be a valid but complementary seed disinfection method against Fusarium wilt.  相似文献   

18.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

19.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

20.
Gut microbes play an important role in insect morphogenesis, nutrition, development of resistance against parasitoids and detoxification of toxic compounds. A culture-based approach is therefore an useful tool for the characterization of cultivable microbial communities associated with the insect gut. In the present study an attempt was made to decipher the gender specificity of gut bacterial communities of two major fruit fly species of India viz., Bactrocera dorsalis (Hendel) and Bactrocera cucurbitae (Conquillett) (Diptera: Tephritidae). Based on molecular identification, B. dorsalis females were found to predominantly harbor the bacterial species Enterobacter cloacae, Enterobacter asburiae and Citrobacter freundii, while B. dorsalis males were found to harbor Providencia rettgerii, Klebsiella oxytoca, Enterococcus faecalis and Pseudomonas aeruginosa The cultivable diversity from females of B. cucurbitae comprised mainly of Morganella morganii and Bacillus pumilis while B.cucurbitae males were predominantly colonized by aerobic endospore formers viz., Bacillus cereus, B. licheniformis and B. subtilis. The above findings have thrown light on a distinct pattern of gender specific gut bacterial colonization in fruit flies, which have to be factored in for the formulation of fruit fly management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号