首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation examines the effects of pH and titratable acidity on the growth and developments of a strain of Monilinia laxa (Aderhold & Ruhland) at seven different pH levels in Potato Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in vitro, was affected, by the pH (2.4–11.52) amended nutrient media. M. laxa exhibited variation in its growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate acidic conditions for optimum performance. In the in vitro analysis, there was mycelia growth at pH 2.40 to 8.84, while pH 11.52 did not support any mycelia growth. There was a continuous and stable increase in weight of fruit as it developed whereas the fruit size increased, then decreased and finally increased as the fruit develops. The acidity dynamics exhibited a non-sinusoidal waveform through the growth and development of the fruit. In all these characteristic variations, M. laxa did not develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity.  相似文献   

2.
The members of the Colletotrichum gloeosporioides species complex (CGSC), the dominant pathogens of apple bitter rot in Nagano prefecture, Japan, were reidentified and the relationship between the species and fungicide sensitivity was revealed. Based on phylogenetic analysis of the ApMat locus with the neighbor-joining (NJ) method, isolates from apple contained three species of the CGSC; C. fructicola, C. aenigma, C. siamense, and three clades of the CGSC: Clade V, S and K. Colletotrichum fructicola and Clade S dominated in Nagano Prefecture. Isolates of C. siamense, C. aenigma and Clade V, S and K remained sensitive to benomyl and quinone outside inhibitor (QoI) fungicides, while C. fructicola often developed resistance to benomyl and QoI fungicides. These results suggest that the development of fungicide resistance differs among members of the CGSC.  相似文献   

3.
Bacillus subtilis CPA-8, a strain with demonstrated ability to control Monilinia spp. in peaches, was studied to elucidate its mechanisms of antifungal activity. Growth inhibition assays using cell-free supernatants and butanolic extracts showed strong antifungal activities against Monilinia laxa and Monilinia fructicola. By comparison with the reference B. subtilis strains UMAF6614 and UMAF6639, fengycin, iturin and surfactin lipopeptides were identified by thin layer chromatography in butanolic extracts from cell-free supernatants, indicating that antibiosis could be a major factor involved in the biological control ability of CPA-8. TLC-bioautography analysis confirmed the presence of fengycin, iturin and surfactin lipopeptides but strong antifungal activity could be associated only with fengycin lipopeptides. These results were definitively supported by mutagenesis analysis targeted to suppress fengycin biosynthesis by disruption of the B. subtilis fenB gene. By TLC-bioautography analysis it was possible to identify transformants from CPA-8 with reduced or suppressed antifungal activity, and this phenotype was associated with the lack of fengycin bands. Fruit trials confirmed that fengycin-defective mutants and their cell-free supernatants lost their ability to control peach brown rot disease in comparison with CPA-8 wild type strain or Serenade Max®, a commercial formulation based on B. subtilis. Furthermore, population dynamics studies determined that CPA-8 fengycin-deficient mutants survived in wounds in peach fruit equally well as the CPA-8 wild type. Taken together our data indicate that fengycin-like lipopeptides play a major role in the biological control potential of B. subtilis CPA-8 against peach brown rot.  相似文献   

4.
Laboratory and nursery experiments were conducted to identify the causal agent of a needle blight of Pinus wallichiana, a species native to the Western Himalayas. The pathogen was identified as Myrothecium verrucaria, on the basis of morphological, cultural and molecular characterization. BLAST analysis of ITS sequences of the pathogen revealed maximum sequence identity of 99% with M. verrucaria. The sequence is the first of this fungus from P. wallichiana. Phylogenetic analysis grouped all M. verrucaria isolates in a single clade; M. roridum and M. inundatum clustered in separate clades. The pathogen grew optimally at 25 ± 1 °C on oat meal agar, pH 5.5. Inoculation experiments with M. verrucaria demonstrated pathogenicity on Pinus halepensis, Cedrus deodara and Cryptomeria japonica, in addition to Pinus wallichiana.  相似文献   

5.
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity in the southern United States. The main form of pathogen control is the use of stem canker resistant soybean varieties. In this study, strains of Diaporthe and Phomopsis were isolated from stem and seeds of soybean in different locations in South America during the years 1989–2014. Genomic DNA from 26 isolates were analyzed by PCR-restriction fragment length polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP) techniques, and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA. The molecular analysis of ITS sequences by alignment with those of ex-type strains deposited in GenBank and morphological characteristics allowed the identification of Phomopsis longicolla, D. phaseolorum var. sojae, D. caulivora and D. aspalathi. An analysis of the pathogenicity of 13 isolates of D. aspalathi inoculated in soybean genotypes carrying different resistance genes to stem canker (Rdm1, Rdm2, Rdm3, Rdm4, Rdm5 and Rdm?) enabled us to identify the occurrence of at least three races of D. aspalathi occurring in Brazil. Among the isolates identified as D. aspalathi, both molecular and phenotypic analyses showed clustering depending on the date of collection and pathogenicity, which revealed the existence of variability of the pathogen.  相似文献   

6.
Anthracnose fruit rot caused by Colletotrichum spp. is a serious post-harvest disease of chili fruits (Capsicum spp.). One hundred-thirty isolates of Colletotrichum spp. were isolated from anthracnose of green and red cayenne pepper (Capsicum annuum) and bird’s eye chili (Capsicum frutescens). The isolates were morphologically identified as Colletotrichum acutatum sensu lato (62 isolates), Colletotrichum truncatum (54 isolates), and Colletotrichum gloeosporioides sensu lato (14 isolates). Molecular identification and phylogenetic analyses were based on internal transcribed spacer regions, β-tubulin, actin, and glyceraldehyde-3-phosphate dehydrogenase genes, and the isolates were re-identified as C. scovillei (58 isolates), C. truncatum (54 isolates), C. siamense (11 isolates), C. fioriniae (four isolates), and C. fructicola (3 isolates). Maximum likelihood trees using combined sequences showed that isolates of the same species grouped in the same main clade with the isolates used for comparison. Pathogenicity testing showed that the tested isolates from each species were pathogenic towards green and red Capsicum annuum and Capsicum frutescens upon treatment of wounded fruit, using both the mycelial plug and conidial suspension methods. Only five isolates of C. truncatum and seven isolates of C. scovillei were found to be pathogenic upon treatment of unwounded fruit. The occurrence of five Colletotrichum spp. (C. siamense, C. fructicola, C. scovillei, C. fioriniae, and C. truncatum) associated with chili anthracnose in Peninsular Malaysia indicates that correct species identification is important to formulate not only effective disease management, but also effective quarantine policy.  相似文献   

7.
Colletotrichum fructicola is a major causal agent among anthracnose pathogens of strawberry in Nara, Japan. We hypothesized that a wide range of weeds growing in and around strawberry fields are inoculum sources of the disease and investigated their potential as hosts of C. fructicola. We also examined the influence of herbicide treatment on C. fructicola sporulation on weeds. The fungus was detected on 31 of 541 (5.7%) leaves sampled from 13 weed species from 2005 to 2008. The fungus was most frequently isolated from leaves of Amaranthus blitum with an isolation frequency of 17.9%; inoculation of A. blitum with the pathogen caused brown leaf spots. Other weeds such as Digitaria ciliaris, Galinsoga ciliata, Solidago altissima, Erigeron annuus, and Sonchus oleraceus were found to harbor the fungus at lower rates (4.3–8.1%) without symptoms. C. fructicola formed acervuli on leaves of A. blitum, D. ciliaris, and S. oleraceus after plants were killed by a herbicide (glyphosate). These results demonstrated that infected weeds associated with strawberry cultivation are potential inoculum sources of C. fructicola, especially after herbicide treatment.  相似文献   

8.
In previous research, concentrated metabolites produced by bacteria of the genera Xenorhabdus and Photorhabdus (which are symbionts of entomopathogenic nematodes) were reported to be highly suppressive to fungal and oomycete plant pathogens. Conceivably, application of non-concentrated bacterial filtrates would be more economically feasible compared to using concentrated metabolites. We evaluated the potency of 10 % v/v cell-free supernatants of the bacteria X. bovienii, X. nematophila, X. cabanillasii, X. szentirmaii, P. temperata, P. luminescens (VS) and P. luminescens (K22) against Fusicladium carpophilum (peach scab), F. effusum (pecan scab), Monilinia fructicola (brown rot), Glomerella cingulata (anthracnose) and Armillaria tabescens (root rot). A bioactive compound derived from Photorhabdus bacteria, trans-cinnamic acid (TCA), was also compared with the bacterial filtrates. Fungal colony size based on manual measurements was compared for accuracy to measurements taken by image analysis. Supernatants of Xenorhabdus spp. exhibited stronger suppressive effects on spore germination and vegetative growth when compared with Photorhabdus spp. Overall, TCA was the most effective treatment; vegetative growth was completely inhibited by TCA (1.27 mg/ml). TCA treatments also suppressed spore germination of F. carpophylium and F. effussum by approximately 90 %. The efficacy of supernatants varied among Xenorhabdus species depending on the species tested, but X. szentirmaii filtrates tended to cause greater inhibition relative to the other bacteria supernatants. Manual measurement of colony diameter required at least two replicate estimates of the colony to avoid a type II error. Area measurements were slightly overestimated based on ruler measurements, but did not affect the outcome of the analysis. Supernatants of Xenorhabdus spp., Photorhabdus spp., or TCA, did not cause any phytotoxic effects when applied to various plant species in the greenhouse. Our results indicate the potential of using TCA or Xenorhabdus cell free supernatants as bio-fungicides. Such a product, based on bacterial culture supernatants, would be economically viable, marketable and easily applicable by the end-users in many situations.  相似文献   

9.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

10.
Early blight and brown spot, caused by respectively Alternaria solani and Alternaria alternata, can lead to severe yield losses in potato-growing areas. To date, fungicide application is the most effective measure to control the disease. However, in recent years, a reduced sensitivity towards several active ingredients has been reported. To shed light on this issue, Alternaria isolates were collected from different potato fields in Belgium during two growing seasons. Subsequently, the sensitivity of these isolates was assessed using four widely used fungicides with different modes of action. Demethylation inhibitors, quinone outside inhibitors, a dithiocarbamate and a carboxylic acid amide were included in this study. Although all fungicides reduced spore germination and vegetative growth of Alternaria species to some extent, the interspecies sensitivity was very variable. In general, A. solani was more suppressed by the fungicides compared to A. alternata. The effectiveness of the dithiocarbamate mancozeb was high, whereas the quinone outside inhibitor azoxystrobin showed a limited activity, especially towards A. alternata. Therefore, a subset of the A. alternata and A. solani isolates was tested for the presence of, respectively, the G143A substitution and the F129L substitution in the cytochrome b. The frequency of A. alternata isolates bearing the resistant G143A allele (approximately 65%) was comparable in both sampling years, although sensitivity of isolates decreased during the growing season. This finding points to a shift of the population towards resistant isolates. Both the European genotype I and American genotype II were present in the A. solani population, with genotype I being the most prevalent. None of the genotype I isolates carried the F129L substitution, whereas in 83% of the genotype II isolates this substitution was present. Our results demonstrate for the first time that the Belgian Alternaria population on potato comprises a considerable broad spectrum of isolates with different sensitivity to fungicides.  相似文献   

11.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

12.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

13.
The virulence spectrum of 300 isolates of Xanthomonas oryzae pv. oryzae (Xoo), representing 17 districts of Punjab, Pakistan was elucidated through inoculation on a set of six rice IRRI-differentials. The virulence level was assessed by using principal component and cluster analysis. Among six principal components (PCs), PC-1 exhibited 59.3 % of the total variance. The highly virulent isolates clusters on the positive side of the ordination away from the point of intersection of PC1 and PC2 and classifies the Xoo isolates from slow disease to the highest disease causing entities. The 300 isolates were categorized into 29 pathotypes (Pt1-29) wherein the highly virulent pathotype (Pt-1), comprises of 39 Xoo isolates were widespread in 12 districts. The majority of Xoo isolates were moderately to least virulent (21.7–43 %) and average disease progress curves confirmed the field reactions of these pathotype clusters for an efficient recognition of Xoo isolates. Interaction of the pathogen with differentials harboring different resistant genes was well investigated in the current study for future management approaches for which the surveillance of the new Xoo pathotypes may expedite the disease resistant rice breeding programme in the country.  相似文献   

14.
The taxonomic assignment of Japanese potato blackleg isolates of Dickeya spp. has not been confirmed after the changes in their former name, Erwinia chrysanthemi. Therefore, we investigated and identified 23 representative isolates of Dickeya spp. from symptomatic stems of potatoes in Japan, with biochemical tests and phylogenetic sequence analysis using recA, dnaX, rpoD, gyrB, and 16S rDNA sequences. Results of our biochemical tests showed that all isolates can be assigned to phenon 5 and biovar 1, which are associated with D. dianthicola. Based on the recA, dnaX, rpoD, gyrB, and 16S rDNA sequences, all isolates are in the same clade with D. dianthicola and were clearly distinguished from D. chrysanthemi, D. dadantii, D. dadantii subsp. dieffenbachiae, D. solani, D. zeae, and D. paradisiaca. Therefore, we conclude that Dickeya spp. isolated from potatoes with blackleg symptoms in Japan are D. dianthicola.  相似文献   

15.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

16.
The receptor-like cytoplasmic kinases (RLCK family VII) are required for plant defense against various pathogens. Previously, OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) was isolated from rice as a potential RSV (rice stripe virus) resistant factor, but its physiological roles in plant defense are yet to be investigated. In this study, we demonstrated that OsPBL1increased defense against P. syringae in transgenic Arabidopsis. To ascertain the role of OsPBL1 gene in plant defense, OsPBL1 tagged with HA (i.e. Hemagglutinin) was overexpressed in Arabidopsis and examined for the resistance against Pseudomonas syringae pv. tomato DC3000 (i.e. Pst DC3000). At 3 dpi of Pst DC3000, transgenic Arabidopsis lines exhibited the reduced chlorotic lesion and propagation of P. syringae, compared to wild type. Elevated pathogen resistance of transgenic lines was correlated with increased H2O2 accumulation and callose deposition on the infected leaves. It was also revealed that expression levels of salicylic acid dependent genes such as PR1, PR2, and PR5, were induced higher in transgenic lines than wild type. Taken together, our data suggested that OsPBL1 exerted the role in defense against pathogen attacks in plant via mainly facilitating salicylic acid dependent pathway.  相似文献   

17.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

18.
Shot hole disease of stone fruits caused by Thyrostroma carpophilum has become a major threat to stone fruit industry of Jammu and Kashmir, India because of the failure in its management with fungicides. To understand the diversity in shot hole pathogen, a combination of conventional (morphological, cultural and pathological) and molecular (ISSR and ITS markers) approaches were employed to discern variability in 25 isolates of T. carpophilum isolated from peach, plum, apricot, almond and cherry leaves collected from Srinagar, Ganderbal, and Baramulla districts of Jammu and Kashmir, India. The studies revealed a high level of variability among the pathogen. Based on the morpho-cultural and pathological studies, the isolates were grouped into different categories based on colony growth, texture, margin and colour besides change in media colour, incubation period, leaf area infected, etc. Using ISSR markers, a high level of polymorphism in different isolates of T. carpophilum was observed which indicated that these markers are suitable for studying the genetic diversity in this pathogen. Based on dendrogram, the isolates were grouped irrespective of their geographical origin or host species. Phylogenetic analysis of the 25 sequences based on ITS region showed maximum similarity with T. carpophilum (Syn. Wilsonomyces carpophilus) sequences retrieved from NCBI and grouped them in a single clade which proved it as a powerful tool for authentic identification. The pathogen was highly variable based on morpho-cultural, pathological and molecular (ISSR) characterisation.  相似文献   

19.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

20.
Competitive effects between Fusarium graminearum, causing Fusarium head blight, and the endophyte Epicoccum nigrum, were performed in in vitro competition assays between the two species. Two E. nigrum isolates were isolated from wheat grains and tested as competitors against two F. graminearum isolates. A dual petri dish assay showed that E. nigrum reduced the mycelial growth of F. graminearum and vice versa. A glass slide assay revealed that E. nigrum crude cultural filtrate also had reducing effect on the growth of F. graminearum comparable to that of E. nigrum spore suspensions. Microscopy showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass was significantly reduced in inoculations applying E. nigrum three days prior to F. graminearum. In conclusion, these results showed competition and mycelial behaviour effects between F. graminearum and E. nigrum and support that E. nigrum may have potential to reduce F. graminearum infections in wheat. Competition experiments should be carried out in planta to study the interaction further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号