首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of previous pasture management and ivermectin treatment on gastrointestinal parasitism, weight gain and carcase composition of steers was studied in the semiarid Pampeana region of Argentina from April 1986 to April 1987. Three groups, each of 15 weaned calves, were grazed on separate lucerne pastures. Group 1 control calves, which grazed paddocks previously grazed by nematode-infected weaners and yearlings with a high nematode egg output, were only medicated when heavy parasitism was recorded. Group 2 calves, which grazed paddocks previously infected by steers at least two and a half years old with low nematode egg output, were treated strategically with ivermectin. Group 3 calves, which grazed on 'clean' paddocks, were treated monthly with ivermectin. Group 1 calves showed heavy parasitism and parasitological parameters were higher than in groups 2 and 3. The liveweight gain responses of groups 2 and 3 were significantly greater than those of group 1 (P less than 0.001) during autumn, winter and early spring. At the end of the study when cattle reached market condition, the liveweight gains of groups 2 and 3 were 74.1 and 81.9 kg, respectively, greater than group 1. Carcase analyses showed significantly greater weight and killing-out percentages in groups 2 and 3 than in group 1. Reduced total bone, muscle and fat weights were observed in group 1.  相似文献   

2.
A worm control programme in which heifers were treated with anthelmintic on three occasions during autumn, was tested in the Mediterranean-type climatic environment of south-west Western Australia. The experiment aimed to determine if the treatments would prevent the heifers contaminating their pastures with worm eggs during autumn, thereby improving their growth performances the following winter. An attempt was made to measure the availability of infective larvae of abomasal worms on the heifers' pastures during early winter by counting the worms in steers, previously of low worm status, that grazed with the heifers from late autumn until the start of mating in mid-winter.

The anthelmintic treatments reduced the contamination of pasture for most of autumn. The treated heifers that grazed these pastures grew faster, and by the start of mating two months after the last treatment were about 22 kg heavier, than untreated heifers grazing contaminated pasture. At the end of mating six weeks later the difference was 45 kg in favour of the treated heifers. At this time half the heifers grazing contaminated pasture were treated with anthelmintic. The following month these heifers grew faster than those left untreated, but by late November they had not attained the wieght of the heifers grazing uncontaminated pasture.

The heifers that grazed uncontaminated pasture produced more calves the following autumn than did those grazing contaminated pasture. The abomasal worm counts of the steers, with a mean of about 46 000 worms, failed to reveal any difference between treatments in the availability of larvae of abomasal worms on pasture. However, it was concluded that the treatments probably exerted their effect on growth rates by reducing the number of infective larvae ingested by heifers grazing the uncontaminated pasture during winter.  相似文献   


3.
Parasite-free pastures would improve cattle health and performance, resulting in possible economic return to producers. Our objective was to determine the effect of a single series of anthelmintic treatment of steers prior to stocking on Coastal bermudagrass pastures, during five consecutive summers, on the parasite burden in cattle. The site for this experiment had been conventionally cropped for several decades, with no exposure to cattle, and would be expected to be relatively free of nematode larvae. The experimental design was a randomized complete block (landscape features) with a split plot arrangement of treatments where main plots were pasture fertilization treatments (mineral, clover plus mineral, and broiler litter) and split plots were low and high forage mass. Anthelmintic treatment included pour-on ivermectin on day -21, albendazole on day -7, and injectable ivermectin 48 h prior to stocking of pastures, with the cattle remaining in drylot during the 48-h period prior to being placed on the experimental paddocks. All steers received only one series of treatments during any given year. Yearling Angus steers (Bos taurus) were managed in a put-and-take grazing system with three "tester" steers assigned to each paddock and "grazer" steers added or removed at 28-day intervals. From 1994 to 1998, steers grazed the paddocks for a 140-day period from mid May until early October each year. Fecal samples for worm egg counts were obtained on day 0 and at 28-day intervals, thereafter. On all sampling days after day 0, samples were obtained only from tester animals. Over the 5-year period, the mean eggs per gram of feces (epg) gradually increased from 0 (following treatment) to a mean of 2.2 (range from 0.7 to 3.0) by the end of the grazing season (the last sampling date) in October. Although the epg were not zero, they were below threshold levels that would allow development of a parasite burden in cattle. In traditional management systems, cattle graze parasite-contaminated pastures; therefore, parasites negatively impact growth and productivity throughout the entire grazing period. Periodic anthelmintic treatments simply give a temporary reprieve from those parasitic infections. Conceptually, using the current grazing system, it should be possible to maintain these pastures in a parasite-free status indefinitely; however, from a drug resistance perspective, it would be most applicable in sod-based rotation systems where cattle graze from two to five years before land is returned to row-crops. By removing the effect of parasites, cattle can grow without the physiological constraints that gastrointestinal parasites place on appetite, digestion, nutrient utilization, and general well being.  相似文献   

4.
Nematodiasis and its subsequent effect on production in Hereford weaner steers in western Victoria was studied during 1983 and 1984. In the first summer, steers were allocated to 2 replicates of 6 treatments--No treatment (Nil); Morantel slow release bolus in March (M1); Morantel bolus in March and June (M2); pour-on levamisole in January, May and July (R3); albendazole in January and July (V2) and albendazole in January, May and July, (V3). In 1984, treatment M2 was discontinued to provide extra replicates for Nil and M1. The replicate paddocks were 5 ha and were stocked with 7 and 8 steers in 1983 and 1984, respectively. Nematode egg counts in faeces, were generally less than 50 epg, indicating low numbers of adult nematodes. Faecal egg counts were highest in autumn and declined during the year. There was a significant (P = 0.02) effect of treatment on mean faecal egg count. Mean egg counts for treatment groups Nil and M1 were 16 and 10 epg above the overall mean (47 epg); those of the other treatments were 6 to 12 epg below the mean. There were no significant (P = 0.8) differences between treatments in the numbers of nematode larvae on pasture, during the experiment. At the end of both years of the experiment most nematodes (92%) were early fourth stage larvae of O. ostertagi. There were no consistent differences in nematode counts between treatments. There were no significant (P = 0.33) differences between treatments in bodyweights at any time during the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.  相似文献   

6.
The epidemiology and the effects of nematode infections on cow-calf systems were followed from 3 weeks before calving to 7 months afterwards. Two groups, each of 15 cow-calf pairs grazed on separate lucerne pastures. Group I (GI) were treated monthly with oxfendazole (4.5 mg kg-1), cows being dosed from calving and calves starting 45 days later. Animals in Group II (GII) were not treated. The egg output of the cows was very low. An increase was recorded 2 months after parturition, consisting mainly of Ostertagia spp. The egg output and worm burdens of calves remained low until late summer and reached a peak in autumn. Ostertagia, Cooperia and Haemonchus were the main genera recovered from slaughtered calves. The pasture contamination and tracer calf worm counts remained consistently low until autumn when they began to increase. Inhibited early fourth stage larvae of Ostertagia were recovered during spring. After calving, the live-weight gains (LWG) of treated GI cows were significantly higher (P less than 0.004) than those of GII cows, whereas the LWG of GI calves were significantly higher during December (P less than 0.037) and March (P less than 0.029) than those of GII calves. There were significant (P less than 0.04) cumulative LWG responses between GI and GII calves with no differences in cow cumulative LWG at the end of the trial. For spring-born calves, these results suggest that strategic deworming programs in cow-calf systems may produce benefits.  相似文献   

7.
Sub-clinical parasitism in spring-born single suckled beef calves was investigated from the middle of their first grazing season until weaning or housing later the same year. The study was conducted on four beef suckler herds in southern England over a 3-year period and involved a total of 334 spring-born beef suckler calves and their dams. The animals were grazed extensively on pastures naturally infected with nematode larvae. At the start of each period of observation, faecal samples were taken from calves and cows and subjected to routine worm egg counts; calves were re-sampled at the end of the grazing season.In July in each year and at each location the calves were ranked by initial weight within sex, paired according to rank and randomly allocated to either an untreated control group or a group in which the calves were each treated with an ivermectin sustained-release (SR) bolus. The calves in both trial groups, and their dams, were grazed together until weaning or housing. The calves were weighed at the initial allocation and at the end of the study. The adult cows were not treated with any anthelmintic during the study.The faecal nematode egg counts (FECs) conducted in July showed that the suckler cows were excreting worm eggs at low concentrations: range 0-100 eggs per gram (epg), with one individual count of 500epg, 88% of the cows sampled had counts of <50epg. Similarly, the counts from the calf samples were fairly low in July: range 0-250epg, 73% of the calves sampled had counts of <50epg. By the end of the grazing season, the faecal samples from the untreated control calves showed higher values: range 0-650epg, with only 58% having an epg of <50.The average rate of daily liveweight gain in the untreated heifer calves was 0.79kg per day, the corresponding figure for the heifer calves treated with the ivermectin SR bolus in mid-summer was 0.88kg per day; the difference of 90g per day was significantly different (P=0.0118). The average rate of daily liveweight gain in the untreated bull calves was 0.91kg per day, the corresponding figure for the bull calves treated with the ivermectin SR bolus in mid-summer was 1.01kg per day; the difference was significantly different (P=0.0169).  相似文献   

8.
为探究三江源区不同季节放牧草场天然牧草营养供给潜力和载畜量,选用3头安装永久性瘤胃瘘管的成年大通牦牛为瘤胃液供体动物,采用概略养分分析法和体外产气法,结合产草量对放牧草场牧草进行综合评定并确定其载畜量。结果表明,1)夏、秋及冬春放牧草场的可食风干草的最高产量分别为(123.83±17.88),(256.88±29.90)和(246.83±66.73) g/m2。2)夏、秋及冬春草场天然牧草的最高粗蛋白(CP)含量分别为(12.69±0.13)%,(10.54±1.22)%和(8.65±0.64)%,其含量随牧草生长而逐渐降低;夏、秋及冬春草场天然牧草EE的最高含量分别为(2.95±0.10)%,(4.38±0.17)%及(3.74±0.70)%;NDS含量的变化趋势与CP一致,而NDF和ADF含量的变化与CP相反,随牧草生长含量不断增加。3)体外发酵pH和氨氮浓度均在正常范围内;夏季草场牧草的48 h产气量、24 h产气估测消化能(DM)、代谢能(ME)和有机物质降解率(OMD)的最大值分别为(57.50±4.27) mL、(9.32±0.59) MJ/kg、(7.98±0.62) MJ/kg和(57.93±3.23)%;秋季草场牧草分别为(54.67±5.35) mL、(8.83±0.64) MJ/kg、(7.47±0.68) MJ/kg及(55.26±3.52)%;冬春草场牧草分别为(58.83±4.51) mL、(9.56±0.60) MJ/kg、(8.24±0.63) MJ/kg及(52.69±5.14)%。4)无补饲条件下,夏、秋及冬春天然放牧草场载畜量分别按数量载畜量、数量载畜量和DCP载畜量核算放牧科学,其最适载畜量分别为7.05,19.51和2.47 SU/hm2;有良好补饲情况下,夏、秋及冬春天然放牧草场载畜量按DCP载畜量、ME载畜量和ME载畜量核算放牧科学,其最适载畜量分别为14.85,29.00和5.03 SU/hm2。因此,三江源区牧草产量和品质季节性差异大,能-氮不平衡,通过补饲可以使夏、秋及冬春放牧草场的载畜量分别提高1.1,0.5和1.0倍左右,有利于促进当地畜牧业发展和生态保护。  相似文献   

9.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

10.
Awareness of herbivore diet composition is an essential element of rangeland stewardship. Objectives of our experiment were to characterize diet selection by yearling steers and mature ewes grazing native tallgrass prairie, changes in dietary preferences that occurred with advancing season, and overlap in selection patterns between ewes and steers. Eight contiguous native tallgrass pastures (31 ± 3.3 ha) were grazed by yearling beef steers (n = 279 per yr) from 15 April to 15 July for two grazing seasons. Mature ewes (n = 813 per yr) subsequently grazed four of the eight pastures (0.15 ha per ewe) from 1 August to 1 October each year. Beginning 1 May, five fresh fecal pats were collected along four permanent transects per pasture at 2-wk intervals until steers were removed on 15 July. Subsequently, fecal grab samples were collected from 25 designated ewes per pasture on 15 August and 15 September. Microhistological analyses were conducted on fecal samples to estimate dietary botanical composition, using 17 grass, forb, and browse species from the experimental site as reference standards. Botanical composition of pastures was estimated annually in October. Diet selection was evaluated using Kulcyznski’s Similarity Index. The proportions of total graminoids and total forbs in steer diets were not different (P = 0.37) among sampling periods. Steer diets were dominated by graminoids (≥ 88.4% of diets) throughout the experiment. Steers and ewes exhibited strong preference for Bouteloua gracilis, Buchloe dactyloides, Dalea purpurea, and Liatris punctata. Ewes also demonstrated strong preferences for Vernonia baldwinii and Ambrosia artemisiifolia. Steers avoided Lespedeza cuneata and Symphyotrichum ericoides, whereas ewes did not avoid any of the reference standards. Ewes selected approximately equal proportions of graminoids and forbs (58% and 42% of diets, respectively), and proportions did not differ (P = 0.67) between sampling periods. Diet selection by mature ewes and yearling steers overlapped by 65% under the conditions of our experiment.  相似文献   

11.
Because wheat forage contains high concentrations of N, NPN, digestible DM, and water, beef cattle and sheep require an adaptation period before positive BW are seen. The objective of the present experiment was to determine the impact of length of exposure of lambs and steers to wheat forage on BW gains, N retention, and forage digestibility. Sixteen steer calves (average BW = 210 +/- 12 kg) and 20 wether lambs (average BW = 31.5 +/- 2.0 kg) were randomly assigned to 1 of 2 treatment groups. Group 1 grazed a wheat pasture for 120 d during the winter, whereas group 2 was wintered on dormant warm-season grass pastures plus warm-season grass hay and plant-based protein supplements. In the spring (April 5), all lambs and steers grazed wheat pasture for 14 d and were then housed in metabolism stalls and fed freshly harvested wheat forage to determine forage digestibility and N metabolism. Data were analyzed for lambs and steers separately as a completely randomized design, using the individual animal as the experimental unit. Lambs and steers grazing wheat pasture for the first time in the spring had less ADG during the first 14 d than lambs (80 vs. 270 g, respectively; P = 0.01) and steers (1.06 vs. 1.83 kg, respectively; P = 0.09) that had grazed wheat pastures all winter. Digestibility of DM, NDF, and ADF fractions and N metabolism of freshly harvested wheat forage by lambs and steers were not different (P > 0.10) between the 2 treatment groups. Less ADG during the first 14 d of wheat pasture grazing is most likely the result of less DMI by nonadapted animals and is not due to diet digestibility or N metabolism.  相似文献   

12.
A 23 factorial design was used to examine the following treatments on the finishing of steers fed diets of 90% sorghum grain and 10% roughage: cottonseed hulls v. lucerne as the roughage component; nil v. 3% tallow; free-choice supplements of (a) sodium chloride, (b) 50/50 mixture of sodium chloride and rock phosphate, and (c) soil; a decrease in the crude protein level of the diet from 14 to 11% after body weight exceeded 350 kg.
Nine groups, each of 10 Shorthorn steers aged between 12 and 15 months, of an initial mean shrunk liveweight of 215.8 ± SE 0.35 kg were used. Individual steers were slaughtered either at 390 kg liveweight or after 177 days.
The mean growth rate was significantly higher in steers receiving cottonseed hulls than in those fed lucerne (1.27 v. 1.13 kg/day) and was significantly higher in those receiving tallow treatments than in those without tallow (1.28 v. 1.12 kg/day). Steers receiving 14% crude protein throughout showed an increased rate of carcase weight gain of 0.059 kg/day compared with steers receiving 11% from 350 kg body weight. The supplements had no effect on performance.
The overall mean carcase weight gain and dressing percentage were 0.68 kg/day and 59.0%, respectively.
Feed conversion (dry matter) was lower in steers receiving tallow than in those not receiving tallow (5.3 v. 6.3).
Steers fed lucerne exhibited intermittent mild to moderate bloat which did not require treatment.  相似文献   

13.
Cow–calf productivity on 2 lightly (25%–30% use) and 2 conservatively grazed pastures (35%–40% use) were evaluated over a 5-year-period (1997 to 2001) in the Chihuahuan Desert of south-central New Mexico. Spring calving Brangus cows were randomly assigned to study pastures in January of each year. Experimental pastures were similar in area (1 098 ± 69 ha, mean ± SE) with similar terrain and distance to water. Use of primary forage species averaged 28.8% ± 4.3% in lightly stocked pastures and 41.8% ± 4.4% on conservatively grazed pastures. Perennial grass standing crop (168.8 ± 86 vs. 173.6 ±  kg·ha-1) and adjusted 205-day calf weaning weights (279.1 ±  vs. 270.7 ±  kg) did not differ among lightly and conservatively grazed pastures. Cow body condition scores in autumn, winter, and spring were similar among grazing levels as were autumn and winter body weights. However, cow body weights tended to be heavier (P < 0.10) in lightly grazed pastures relative to conservatively grazed pastures (524 vs. 502 ± 9.7 kg) in spring. Lightly grazed pastures yielded greater (P < 0.05) kg of calf weaned·ha-1 and calf crop percent than conservatively grazed pastures in 1998 due to destocking of conservatively grazed pastures during that year's drought. Conversely, pregnancy percent tended to be greater (P < 0.1) in conservatively relative to lightly grazed pastures (92.6% vs. 87.7%); however, this advantage is explained by herd management as cows in the conservatively grazed pastures were removed during drought of 1998, avoiding exposure to the drought stress experienced by cows in the lightly grazed pastures. Nonetheless, pregnancy percents from both grazing treatments would be acceptable for most range beef production systems. Results suggest that consistently applying light grazing use of forage is a practical approach for Chihuahuan Desert cow–calf operations to avoid herd liquidation during short term drought.  相似文献   

14.
Tasco-Forage is an Ascophyllum nodosum seaweed-based product that has increased antioxidant activity in both plants and animals. Endophyte (Neotyphodium coenophialum ([Morgan-Jones and Gams] Glenn, Bacon, and Hanlin)-infected and uninfected tall fescue (Festuca arundinacea Schreb.) pastures in Virginia and Mississippi during 1997 were treated or not with 3.4 kg Tasco/ha in April and July. There were two replications of each treatment at each location. Forty-eight steers (6/replication) grazed pastures at each location (n = 96) from April to October prior to transportation to Texas Tech, Lubbock, for finishing during a 160-d period in the feedlot. Blood (antemortem) and liver (postmortem) samples were collected. After slaughter and chilling, the left strip loins (IMPS #180) were collected from three randomly selected steers from within each pasture replication (n = 48). Strip loins were vacuum-packaged and stored at 2 degrees C. At postmortem d 7, 14, 21, and 28, strip loins were removed from packaging and fabricated into 2.54-cm steaks. Following each fabrication day postmortem, the strip loins were repackaged and stored at 2 degrees C until the following postmortem time. After the prescribed fabrication, steaks were overwrapped with polyvinyl chloride film, subjected to simulated retail display at 2 degrees C for up to 3 d, and subjective and objective color were evaluated daily by a trained panel. Steaks from Mississippi steers that had grazed Tasco-treated fescue retained higher (P < 0.05) CIE a* color scores throughout retail display. Steaks were more uniform and had less discoloration and less browning (P < 0.05) if they were from steers that had grazed Tasco-treated fescue, and the effect was greatest for steers from Mississippi (location x Tasco interaction; P < 0.05). The endophyte in tall fescue may decrease uniformity and increase lean discoloration and two-toning of beef steaks when removed from vacuum packaging on or beyond d 21 postmortem (endophyte x Tasco x postmortem day interaction: P < 0.05). Vitamin E in liver was increased (P < 0.06) and serum vitamin E was decreased (P < 0.09) in steers that had grazed the treated pastures. These experiments indicated that Tasco applied to tall fescue during the grazing season can improve color stability and extend beef shelf-life, particularly in cattle grazing infected tall fescue. The mode of action of Tasco is not clear, but antioxidants and specific vitamins may be involved.  相似文献   

15.
Grazing studies were conducted to determine cattle growth performance, evaluate toxicosis, and compare grazing behavior in stocker cattle grazing nonergot alkaloid-producing endophyte-infected (AR542 or AR502), endophyte-free (E-), or wild-type toxic endophyte-infected (E+) Jesup, Georgia-5, and Kentucky-31 tall fescue. Replicated 0.81-ha tall fescue paddocks were established at the Central Georgia Branch Station at Eatonton and the Northwest Georgia Branch Station at Calhoun during October 1998 and were stocked with beef cattle for autumn and spring periods from fall 1999 through spring 2002. Mean ergot alkaloid concentrations were higher (P < 0.01) on E+ pastures than the other treatments at both locations. At Calhoun and Eatonton, post-treatment serum prolactin concentrations were decreased (P < 0.01) on E+ compared with AR542, AR502, and E- tall fescue. Cattle on AR542, AR502, and E- pastures had lower (P < 0.05) post-treatment rectal temperatures than cattle grazing E+ tall fescue during spring at Eatonton and Calhoun. Calf ADG was higher (P < 0.05) on AR542, AR502, and E- as compared with E+ tall fescue during autumn and spring grazing at Eatonton, and at Calhoun, cattle on E+ pastures had lower (P < 0.05) ADG in both autumn and spring. Gain/hectare was higher (P < 0.05) on AR542, AR502, and E- than on E+ during autumn at Eatonton and during spring at both locations. In autumn at Calhoun, gain/hectare was greater (P < 0.05) on AR502 and E- compared with E+ tall fescue. During April, May, and June, cattle grazing E+ pastures at Eatonton spent more (P < 0.01) time idling, more (P < 0.01) time standing, and used more (P < 0.01) water than cattle on AR542 and E- tall fescue. Daily prehensions and biting rate were each higher (P < 0.01) on AR542 and E- tall fescue than E+ tall fescue in both grazing seasons. There were no differences among pasture treatments for bite size in either spring (P = 0.50) or autumn (P = 0.34). Steers grazing E+ pastures had lower DMI than steers grazing AR542 and E- pastures during spring (P < 0.10) and lower DMI than steers grazing E- pastures during autumn (P < 0.05). Daily steer water usage was decreased (P < 0.10) in E+ pastures compared with AR542 and E- pastures during late fall. These results indicate that nonergot alkaloid-producing endophyte technology is a promising option for alleviating tall fescue toxicosis in stocker cattle.  相似文献   

16.
Our objective was to evaluate a replicated (n = 2) Midwestern year-round grazing system's hay needs and animal production compared with a replicated (n = 2) conventional (minimal land) system over 3 yr. Because extended grazing systems have decreased hay needs for the beef herd, it was hypothesized that this year-round system would decrease hay needs without penalizing animal production. In the minimal land (ML) system, two replicated 8.1-ha smooth bromegrass-orchardgrass-birdsfoot trefoil (SB-OG-BFT) pastures were rotationally stocked with six mature April-calving cows and calves and harvested as hay for winter feeding in a drylot. After weaning, calves were finished on a high-concentrate diet. Six mature April-calving cows, six mature August-calving cows, and their calves were used in the year-round (YR) grazing system. During the early and late summer, cattle grazed two replicated 8.1-ha SB-OG-BFT pastures by rotational stocking. In mid-summer and winter, April- and August-calving cows grazed two replicated 6.1-ha, endophyte-free tall fescue-red clover (TF-RC) and smooth bromegrass-red clover (SB-RC) pastures, respectively, by strip-stocking. In late autumn, spring-calving cows grazed 6.1-ha corn crop residue fields by strip-stocking. Calves were fed hay with corn gluten feed or corn grain over winter and used as stocker cattle to graze SB-OG-BFT pastures with cows until early August the following summer. First-harvest forage from the TF-RC and SB-RC pastures was harvested as hay. Body condition scores of April-calving cows did not differ between grazing systems, but were lower (P < or = 0.03) than those of August-calving cows from mid-gestation through breeding. Preweaning calf BW gains were 47 kg/ha of perennial pasture (P < 0.01) and 32 kg/cow (P = 0.01) lower in the YR grazing system than in the ML system. Total BW gains ofpreweaning calf and grazing stocker cattle were 12 kg/ha of perennial pasture less (P = 0.07), but 27 kg/cow greater (P = 0.02) in pastures in the YR grazing system than in the ML system. Amounts of hay fed to cows in the ML system were 1,701 kg DM/cow and 896 kg DM/cow-stocker pair greater (P < 0.05) than in the YR grazing system. Extended grazing systems in the Midwest that include grazing of stocker cattle to utilize excess forage growth will decrease stored feed needs, while maintaining growing animal production per cow in April- and August-calving herds.  相似文献   

17.
A study was conducted to evaluate relative resistance of Dorper crossbred (DO), Katahdin (KA), St. Croix (SC), and Hampshire (HA) ewes to natural and experimental gastro-intestinal (GI) nematode infection over a 20-month period. The objective of Experiment 1 was to evaluate breeds for resistance to infection acquired naturally from mixed grass pastures. In Year 1 (May-December 2000) de-worming of ewes occurred during wet, hot conditions in July and during late pregnancy in December. In Year 2 (January-December 2001), ewes were de-wormed after fecal egg count (FEC) for a breed group rose above 1000 eggs per gram (epg) or after blood packed cell volume (PCV) of an individual ewe fell below 20. FEC was determined every 28 days and PCV every 14-28 days. In both the years, ewes were pastured together, except during the 28-days breeding periods, on tall fescue, bermudagrass, or ryegrass, and rotated among pastures dependent on forage availability. Ewes were in good or excellent condition (body condition score of 3-4 out of 5) throughout the study. The objective of Experiment 2 was to evaluate the breeds for relative resistance to an experimental infection with Haemonchus contortus infective larvae. Both PCV and FEC were determined every 7 days from 14 to 42 days after inoculation with 30000 infective larvae per ewe. In Experiment 1, Year 1, FEC was slightly greater and PCV was lower from July to September in DO ewes (breed x time, P<0.001). In Year 2, de-worming occurred 14 days later in DO ewes compared with other breed types. Otherwise PCV and FEC were similar among the hair breeds and higher and lower, respectively, compared with HA ewes (breed x time, P<0.001). In Experiment 2, FEC and PCV were similar among hair breeds; FEC was lower and PCV higher in hair breeds compared with that of HA ewes (P<0.01). Relative resistance of mature Dorper crossbred ewes was comparable to that of Katahdin and St. Croix ewes and superior to that of Hampshire ewes.  相似文献   

18.
2005年9~10月份和11~12月份在青海省三角城种羊场秋冬牧场采用IGER记录器分别观测记录了牦牛的采食和反刍行为。秋季牧场牦牛除挤奶外24 h放牧,冬季牧场夜间栓系。结果表明牦牛在秋冬牧场的采食和反刍时间差异不显著(P>0.05)。牦牛在冬季牧场的非采食下颚活动数和每分钟采食口数显著高于秋季牧场(P<0.05)。在秋季牧场牦牛的干物质采食率和单口采食量(鲜重、干物质重、有机质)显著高于冬季牧场(P<0.05),但未知体重损失率差异不显著(P>0.05)。秋冬季牧场牦牛的采食行为主要集中在白昼,而反刍行为主要在夜间进行。  相似文献   

19.
Data from 403 calves from Angus, Brahman, and reciprocal-cross cows sired by Polled Hereford bulls were used to evaluate the impact of postweaning backgrounding forages on postweaning BW, gains, and carcass traits. Calves were born (spring of 1991 through 1994) and reared on either endophyte-infected tall fescue or common bermudagrass pastures. After weaning, calves were transported 360 km to the Grazinglands Research Laboratory, west of El Reno, OK, and, within breed and preweaning forage, were assigned to one of the following winter stocker treatments: 1) winter wheat pasture or 2) dormant native prairie plus supplemental CP. In March, winter stocker treatments were ended and calves were grazed as a single group on cool-season grasses until early July (1992, 1993, and 1994) or late May (1995), when the feedlot phase began. In the feedlot, calves were fed a high concentrate diet for an average of 120 d until a backfat thickness of > 10 mm was reached. Calves were shipped in truck load lots to Amarillo, TX (350 km), for processing and collection of carcass data. Averaged over calf breed group, calves wintered on wheat pasture gained faster (P < 0.01) during the stocker phase (0.71 vs 0.43 kg); had heavier (P < 0.01) final feedlot weights (535 vs 512 kg); lower feedlot (P < 0.01) ADG (1.37 vs 1.53 kg); heavier (P < 0.01) carcass weights (337 vs 315 kg); larger (P < 0.01) longissimus muscle (84.9 vs 81.8 cm2); higher percentage (P < 0.01) of kidney, heart, and pelvic fat (2.32 vs 2.26); and higher (P < 0.01) dressing percentage (62.2 vs 61.3) than calves backgrounded on native prairie. Maternal heterosis for stocker ADG was evident in calves backgrounded on native prairie but not on winter wheat (P < 0.10), but the two environments were similar in maternal heterosis for feedlot ADG and carcass traits. Calves wintered on native prairie were restricted in growth and expressed compensatory gain during the feedlot phase but not during the spring stocker phase. Dormant native grasses can be used to winter stocker calves excess to the winter wheat pasture needs, but ownership of these calves would have to be retained through the feedlot phase to realize any advantage of built-in compensatory gain. Finally, these data suggest that expression of maternal heterosis for weight gain is more likely in calves backgrounded on native prairie than in calves grazed on winter wheat.  相似文献   

20.
In a 3-yr study, 135 crossbred steers (330 ± 10 kg) were used in a randomized complete block design to evaluate corn dried distillers grains plus solubles (DDGS) fed to yearling steers as a substitute for forage and N fertilizer and its effect on N use efficiency in yearling steers grazing smooth bromegrass pastures. Steers were initially stocked at 6.8 animal unit months (AUM)/ha on nonfertilized smooth bromegrass pastures (CONT), at 9.9 AUM/ha on smooth bromegrass pastures fertilized with 90 kg of N/ha (FERT), or at 9.9 AUM/ha on nonfertilized smooth bromegrass pastures with 2.3 kg (DM) of DDGS supplemented daily per steer (SUPP). Paddock was the experimental unit, with 3 replications per treatment per year for 3 yr. Paddocks were strip-grazed, and put-and-take cattle were used to maintain similar grazing pressure among treatment paddocks during the 160-d grazing season. Steers consumed less forage (P < 0.01), but total N intake for SUPP was greater (P < 0.01) per steer and per hectare than for FERT, and both were greater (P < 0.01) than for CONT. Nitrogen retention for steers in the SUPP treatment was increased (P < 0.01) by 31% compared with N retention in the CONT and FERT treatments. Nitrogen retention per hectare for SUPP was 30 and 98% greater (P < 0.01) than N retention per hectare for FERT and CONT, respectively. Nitrogen excretion per steer and per hectare were also greater (P < 0.01) for SUPP than FERT, and both were increased (P < 0.01) compared with CONT. Animal N use efficiency was similar (P = 0.29) for steers in the CONT, FERT, and SUPP treatments. However, system-based N use improved (P < 0.01) by 144% for SUPP compared with FERT. The DDGS increased N intake and N excretion in yearling steers. However, because of improvements in BW gain and increases in stocking rate of pastures, DDGS can be a useful tool to increase the efficiency of N use in smooth bromegrass grazing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号