首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 227 毫秒
1.
为减少采摘点定位不当导致末端碰撞损伤结果枝与果串,致使采摘失败及损伤率提高等问题,该研究提出了基于深度学习与葡萄关键结构多目标识别的采摘点定位方法。首先,通过改进YOLACT++模型对结果枝、果梗、果串等葡萄关键结构进行识别与分割;结合关键区域间的相交情况、相对位置,构建同串葡萄关键结构从属判断与合并方法。最后设计了基于结构约束与范围再选的果梗低碰撞感兴趣区域(region of interest, ROI)选择方法,并以该区域果梗质心为采摘点。试验结果表明,相比于原始的YOLACT++,G-YOLACT++边界框和掩膜平均精度均值分别提升了0.83与0.88个百分点;对单串果实、多串果实样本关键结构从属判断与合并的正确率分别为88%、90%,对关键结构不完整的果串剔除正确率为92.3%;相较于以ROI中果梗外接矩形的中心、以模型识别果梗的质心作为采摘点的定位方法,该研究采摘点定位方法的成功率分别提升了10.95、81.75个百分点。该研究为葡萄采摘机器人的优化提供了技术支持,为非结构化环境中的串类果实采摘机器人的低损收获奠定基础。  相似文献   

2.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.85和3.30个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.79个百分点,较Ghostnet-YOLOv4,检测速度提升了27.64个百分点。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

3.
针对自然环境下油茶果存在多种类、多遮挡及小目标等问题,该研究基于YOLOV5s提出COF-YOLOv5s(camellia oleifera fruit-you only look once)油茶果识别模型,实现油茶果的高精度检测。通过添加小目标检测层、将FasterNet中的轻量化模块Faster Block嵌入到C3模块及添加Biformer注意力机制对YOLOv5s进行改进。试验结果表明,改进后网络在测试集上的精度、召回率、平均精度均值分别为97.6%、97.8%、99.1%,比YOLOv5s分别提高2.9、7.5、6.5个百分点,推理时间为10.3 ms,模型权重文件16.1 MB。将模型部署到Jetson Xavier NX中,结合ZED mini相机进行油茶果识别与定位试验。室内试验得到COF-YOLOv5s的召回率为91.7%,比YOLOv5s提高47.3个百分点;室外绿油茶果的召回率为68.8%,小目标红油茶果在弱光条件下的召回率为64.3%。研究结果可为实现油茶产业的智能化和规模化提供理论支持。  相似文献   

4.
为解决草莓采摘过程中被遮挡及目标较小情况下漏检的问题,同时提升草莓的识别精度与计算速率,该研究提出了一种基于改进的轻量级Mobile-YOLOv5s草莓识别检测算法。首先,为了提高计算效率,使用了轻量化的MobileNetV3网络替代了原始的YOLOv5s主干网络,并引入了Alpha-IoU损失函数以加快模型的收敛速度,提高对重叠目标的识别准确率;其次,考虑到草莓目标较小的情况,使用K-Means++算法对原始YOLO的anchor进行重聚类,并增加了一个检测头,使其更加适应草莓的尺寸。试验结果表明,改进后的网络模型检测帧率为44帧/s,比原模型提升了15.7%;计算量为8.3×109/s,比原模型降低了48%;模型大小为4.5 MB,比原模型降低了41.5%;成熟草莓检测精度为99.5%,均值平均精度为99.4%,相较于原YOLOv5s算法分别提高了3.6和9.2个百分点。改进后的模型可以更快速、准确地识别出各阶段的草莓,为草莓智能化采摘提供技术支撑。  相似文献   

5.
用于草莓收获机器人的果实定位和果柄检测方法   总被引:5,自引:2,他引:3  
介绍了一种用于草莓收获机器人的果实定位和果柄检测方法。利用基于OHTA颜色空间的图像分割方法从背景中分割草莓通过计算二值化草莓blob的惯性主轴来判断草莓的姿态,根据草莓的成熟度实现了果实的选择性采摘。试验证明这种方法的平均判别速度为1 s,果柄误判率为7%,在采摘过程中仅对5%的果实造成损伤,满足草莓机器人的收获速度和精度要求。  相似文献   

6.
为提高金银花采摘机器人的工作效率和采摘精度,实现将模型方便快速部署到移动端,该研究提出一种基于改进YOLOv5s的轻量化金银花识别方法。用EfficientNet的主干网络替换YOLOv5s的Backbone层,并在改进之后的Backbone层加入原YOLOv5s的SPPF特征融合模块,减少了模型的参数量和计算量,同时降低模型权重的大小,便于之后移动端的部署;其次,为提高模型对于金银花的识别效果,该研究在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,在略微提高参数量的前提下提高了模型识别金银花的精确度和平均精度,提高了采摘效率。试验结果显示,改进后的轻量化模型参数量仅为3.89 × 106 M,为原始YOLOv5s模型的55.5%;计算量仅为7.8 GFLOPs,为原始模型的49.4%;权重仅为7.8 MB,为原始模型的57.4%,并且精确度和平均精度达到了90.7%和91.8%,相比原始YOLOv5s模型分别提高1.9和0.6个百分点。改进后的轻量化模型与当前主流的Faster-RCNN、SSD、YOLO系列目标检测模型相比,不但提高了检测精度,还大幅减少了模型的参数量、计算量和权重大小,研究结果为后续金银花采摘机器人的识别和移动端的部署提供了参考和依据。  相似文献   

7.
基于深度学习的葡萄果梗识别与最优采摘定位   总被引:6,自引:6,他引:0  
针对葡萄采摘机器人在采摘作业中受果园环境干扰,难以准确识别与分割葡萄果梗及定位采摘点的问题,该研究根据葡萄生长的特点提出一种基于深度学习的葡萄果梗识别与最优采摘定位方法。首先通过改进掩膜区域卷积神经网络(Mask Region with Convolutional Neural Network,Mask R-CNN)模型对果梗进行识别与粗分割;然后结合阈值分割思想对果梗的色调、饱和度、亮度(Hue Saturation Value,HSV)色彩空间进行分段式提取,取每段色彩平均值作为该段果梗基准颜色阈值,利用区域生长算法对果梗进行精细化分割;最后计算果梗图像区域的质心,并以临质心点最近的果梗水平两侧中心作为最终采摘点。试验结果表明,在不同天气光照下该方法对葡萄果梗的检测精确率平均值为88%;在果梗成功识别后最优采摘点定位准确率达99.43%,单幅图像的果梗采摘定位平均耗时为4.90s,对比改进前Mask R-CNN检测耗时减少了0.99 s,F1-得分提高了3.24%,检测效率明显提升,该研究为葡萄采摘机器人提供了一种采摘点定位方法。  相似文献   

8.
樱桃番茄串生长姿态多样、果实成熟度不一,采摘机器人进行“粒收”作业时,常面临果梗干涉末端执行器、成熟度判断错误等问题,导致采摘效率低下、难以有效实现分级采收。针对上述问题,该研究提出一种级联视觉检测流程,包括采收目标检测、目标果实特性判别、果实与果梗位置关系判断3个关键环节。首先根据农艺要求按成熟度将番茄果实分为4个等级,引入YOLOv5目标检测模型对番茄串和番茄果实进行检测并输出成熟度等级,实现分期采收。然后对果实与果梗的相对位置进行判断,利用MobileNetv3网络模型对膨胀包围盒进行果实与果梗相对位置关系判断,实现末端执行器采摘位姿控制。日光温室实际测试结果表明,本文提出的级联检测系统平均推理用时22ms,在IOU(intersectionoverunion)阈值为0.5的情况下,樱桃番茄串与果实的平均检测精度达到89.9%,满足采摘机器人的视觉检测精度和实时性要求,相比末端执行器以固定角度靠近待采目标的方法,本文方法采收效率提升28.7个百分点。研究结果可为各类果蔬采摘机器人研究提供参考。  相似文献   

9.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

10.
基于改进YOLOv3的果园复杂环境下苹果果实识别   总被引:5,自引:4,他引:1  
为使采摘机器人能够全天候的在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确的识别,该研究提出了一种基于改进YOLOv3的果实识别方法。首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数,对模型进行优化,提高识别精度。以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s。与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值。  相似文献   

11.
再生稻具有一种两收的优势,其再生力直接决定了水稻再生季产量,而水稻再生力与再生季再生芽的数量密切相关。传统人工水稻再生芽检测方法存在接触损伤、主观低效和重复性差等缺点,因此该研究提出了一种基于Micro-CT(computed tomography)和改进的DeepSORT(simple online and realtime tracking)的再生芽多目标追踪计数和再生力评价方法。首先采用Micro-CT成像获取再生季水稻断层图视频流,然后利用YOLOv5s网络作为再生芽追踪检测器,最后通过改进的DeepSORT追踪算法实现水稻再生芽的精准追踪计数。其中DeepSORT改进包括优化再生芽追踪过程中的ID错误;增加再生芽目标追踪的匹配次数,改善ID跳变的问题;计算再生芽的高度信息,实现对再生芽中有效芽的判别。试验结果表明,在目标检测上,YOLOv5s对再生芽和茎秆的平均检测准确率分别为97.3%和99.1%,在再生芽多目标追踪上,改进的DeepSORT算法的多目标跟踪准确度为77.61%,高阶跟踪精度为61.73%,ID跳变为6,与改进之前相比,多目标跟踪准确度和高阶跟踪精度分别提升了1.51和8.5个百分点,ID跳变降低了94%。对8种不同处理共104盆水稻再生芽进行追踪计数,将系统测量值与人工测量值进行统计对比,结果证明本文方法测量的再生芽数量和人工观测值的决定系数为0.983,均方根误差为3.460,平均绝对百分比误差为5.647%,两者具有较高的回归性。研究基于有效再生芽和茎秆数量的比值得到水稻早期再生力,对2个水稻品种共38盆水稻的再生力和再生季实际产量进行相关分析得到决定系数分别为0.795和0.764。该研究为水稻再生芽无损检测和再生力早期评价提供了一种新的技术途径。  相似文献   

12.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

13.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

14.
基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法   总被引:2,自引:2,他引:0  
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花...  相似文献   

15.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   

16.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

17.
针对非结构化环境下香梨识别准确率低,检测速度慢的问题,该研究提出了一种基于改进YOLOv8n的香梨目标检测方法。使用Min-Max归一化方法,对YOLOv3-tiny、YOLOv5n、YOLO6n、YOLOv7-tiny和YOLOv8n评估选优;以YOLOv8n为基线,进行以下改进:1)使用简化的残差与卷积模块优化部分C2f(CSP bottleneck with 2 convolutions)进行特征融合。2)利用simSPPF(simple spatial pyramid pooling fast)对SPPF(spatial pyramid pooling fast)进行优化。3)引入了PConv(partial convolution)卷积,并提出权重参数共享以实现检测头的轻量化。4)使用Inner-CIoU(inner complete intersection over union)优化预测框的损失计算。在自建的香梨数据集上,指标F0.5分数(F0.5-score)和平均精度均值(mean average precision, mAP)比原模型分别提升0.4和0.5个百分点,达到94.7%和88.3%。在GPU和CPU设备上,检测速度分别提升了34.0%和24.4%,达到了每秒99.4和15.3帧。该模型具有较高的识别准确率和检测速度,为香梨自动化采摘提供了一种精确的实时检测方法。  相似文献   

18.
提升作物水分表型诊断精度和时效性是当前智慧灌溉领域研究的难点和热点之一。该研究针对以上难点提出了一种改进机器视觉算法的冬小麦旱情智能诊断方法。在测坑试验系统中设置了适宜水分处理(CK)、中度干旱处理(T1)、重度干旱处理(T2),通过数码相机获取冬小麦早期RGB高清图像,利用HSV色彩空间改进的K-means聚类算法对小麦图像分割敏感区域,提取图像颜色和纹理特征数据并开展主成分分析,辨别出累计贡献率达到97.2%的前3维主成分。采用蝙蝠算法优化支持向量机(bat algorithm-support vector machine,BA-SVM)惩罚因子$ (c=5) $和核参数(σ=0.1),建立了基于蝙蝠算法优化的冬小麦旱情感知支持向量机模型,运用主成分分析降维后的识别精度优于其他特征组合,识别正确率为96.5%。明显高于GA-SVM(6.5%)和SVM(9.3%),运行时间分别缩短7、14 s。构建了冬小麦旱情智能诊断方法,可为实时诊断冬小麦旱情和智慧灌溉决策提供可靠方法。  相似文献   

19.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号