首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
为探明建筑回填土条件下草坪草种植的适宜性以及再生水灌溉对草坪草生长和土壤理化性质的影响情况,选用黑麦草为试验对象,通过室内盆栽试验的方式,设置清水灌溉、再生水灌溉、清水—再生水交替灌溉3个处理,研究了呼和浩特市建筑回填土灌溉再生水对草坪草生长及土壤理化性质的影响。试验发现:(1)与清水灌溉相比,清水—再生水交替灌溉、再生水灌溉下的草坪草生长速率分别增长了23%,34%。(2)各处理草坪草在质地、盖度、均一性方面的得分表现为:再生水灌溉清水-再生水交替灌溉清水灌溉,但差异性不显著(P0.05)。(3)到观测结束期时,再生水、清水—再生水交替灌溉下的土壤全盐量较对照组分别增加了8%,3%。(4)不同灌溉水质条件下黑麦草对土壤重金属的富集具有差异性,土壤中重金属含量有增有减。试验结果表明,再生水灌溉对草坪草的生长速率有很明显的促进作用,草坪草的颜色在再生水灌溉下要显著优于其他处理(P0.05)。同时,对试验土壤及草坪草的后期分析能够发现,短期内再生水灌溉下的土壤不会对草坪草产生盐害,土壤也均未受到污染,可见短期内建筑回填土下使用再生水灌溉草坪草是可行的。  相似文献   

2.
从建坪地准备、繁殖季节选择、分株繁殖技术、成坪前管理等方面介绍了马尼拉草坪草的分株繁殖建坪技术要点。  相似文献   

3.
不同水分处理对高羊茅草耗水及生长质量的影响   总被引:1,自引:0,他引:1  
为了探求不同土壤水分条件对草坪草耗水和生长质量的影响,对冷季型高羊茅草坪草在整个生育期内的蒸散量、生长速度和表观质量等特性进行了研究。研究结果表明,草坪草的耗水量随着土壤水分的增加而增加,蒸散量在中午(12:00—15:00)最活跃;植株生长速度与灌水量呈显著的正相关性,但当土壤水分达到一定程度之后,再增加灌水量不能明显提高草坪草的生长速度;土壤含水量越大草坪草表观质量不一定越好,当灌溉控制土壤水分下限小于70%FC(田间持水量)时,灌水量能显著提高草坪草的质量,当灌溉控制土壤水分下限大于70%FC时,灌水量对草坪草的表观质量影响较小。  相似文献   

4.
为节约城市清洁水源,扩大再生水利用力度,确保高质量的草坪,以草地早熟禾为研究对象,探讨了不同灌溉水源及再生水灌溉不同水分梯度下草坪草生长速率及叶绿素的变化特征。试验采用7种水分处理:清水适宜灌、混合水适宜灌、再生水充分灌、再生水适宜灌、再生水轻微干旱胁迫、再生水中度干旱胁迫、再生水重度干旱胁迫,灌水下限分别70%fc(田间持水量)、70%fc、80%fc、70%fc、60%fc、50%fc、40%fc,灌水定额相同。研究表明:不同灌溉处理下草坪草生长速率差异明显,再生水灌溉促进了草坪草的生长,草坪草生长速率与供水量成正相关;再生水灌溉下草坪草叶绿素及类胡萝卜素含量显著高于清水适宜灌处理下草坪草叶绿素及类胡萝卜素含量,而再生水灌溉草坪草叶绿素及类胡萝卜素含量在处理间差异不显著。  相似文献   

5.
亚热带地区草坪草引种试验初报   总被引:2,自引:1,他引:2  
草坪草引种试验的结果表明,在引进的15个草坪草中适宜在福建地区建植的主要是暖地型草坪草,其中沟叶结缕草和细叶结缕草表现最好,土壤配方A(即塘泥50%,砂子50%,鸡粪占总土壤重量10.8%)对建植草坪有显效果,表施土壤可促进草坪草的生长并增加密度,尤其是对以直立茎为主匍匐茎为辅的草坪效果非常显。  相似文献   

6.
黄新  叶红霞  舒小丽  吴殿星 《核农学报》2008,22(6):806-810,815
高羊茅(Festuca arundinaceaSchreb.)是一种重要的牧草和草坪兼用型草种,在农牧业和草坪业中均占据重要地位。本文对高羊茅的育种历史和现状作了概述,综述了高羊茅分子生物学研究和利用生物技术创新种质的进展,旨在为开展高羊茅生物技术育种提供参考。  相似文献   

7.
北京地区常用草坪草的耗水规律及适宜灌溉量研究   总被引:17,自引:3,他引:17  
研究了在北京地区不同供水条件下,草地早熟禾、高羊茅、多年生黑麦草、野牛草、结缕草和狗牙根整个生长季的蒸散量差异和耗水规律。结果表明,蒸散量主要与草坪草的生物学特性有关,受水分条件影响;冷季型草坪草中多年生黑麦草耗水最少,暖季型草坪草中结缕草耗水最少;通过比较坪草和北方主要农作物的KC值,得出草坪与大田作物的需水量相当;北京地区常用草坪草整个生长季的适宜灌溉量为:高羊茅(391.8 mm)>草地早熟禾(368.3 mm)>多年生黑麦草(315.1 mm)>狗牙根(300.7 mm)>野牛草(184.0 mm)>结缕草(110.5 mm)。  相似文献   

8.
修剪留茬高度对北京地区草坪草耗水量的影响   总被引:2,自引:0,他引:2  
水资源短缺,城市用水紧张,使得草坪灌溉用水管理受到极大关注。为了研究草坪修剪管理的节水效果,采用小型排水式蒸渗仪,通过田间实验研究了充分供水条件下3种草坪草(早熟禾、高羊茅、黑麦)不同修剪高度(留茬高度:5、10、15 cm和不修剪)处理对耗水量的影响,并根据水量平衡原理计算得到了3种草坪草的耗水量。研究结果表明:草坪草的耗水量均随修剪留茬高度增加而增加,不同草种间存在差异。3种草坪草修剪留茬高度为5 cm时较不修剪耗水量减少36.78%(早熟禾)、34.02%(高羊茅)、33.54%(黑麦),平均减少耗水量34.78%。所得参数可以为类似地区3种草坪草灌溉系统的规划设计和节水管理提供基础理论依据。  相似文献   

9.
体细胞变异是来源于细胞和组织培养过程中的变异.本文综合国内外体细胞无性系变异的相关研究,概述了体细胞无性系变异的来源、遗传学基础及筛选与鉴定途径,详细介绍了体细胞无性系变异在选育抗逆境胁迫、抗病虫害、抗除草剂草坪草等方面的研究进展,叙述了应用体细胞无性系变异育种存在变异类型复杂、变异方向难以预期、劣变多、突变细胞系分化能力下降、变异遗传不稳定等问题以及讨论了利用离体筛选的方法获得相应变异体来丰富草坪草育种材料的前景.  相似文献   

10.
百喜草在我国南方生态农业建设的应用效应   总被引:5,自引:0,他引:5  
简述了百喜草在我国南方生态农业建设中的应用效应,包括应用于果(桑、茶)园覆盖作物、水土保持、荒坡地和工矿废弃地治理、草坪建植、饲料开发和食用菌栽培等方面。  相似文献   

11.
Investigation of barley germplasm in China   总被引:2,自引:0,他引:2  
A total of 16,251 barley accessions including 6,026 naked barley have been collected over the whole country in China. Among them 8,865 were landraces, 1,035 bred lines and 6,351 foreign accessions. The agroecological distribution, classification and characterization of agricultural traits, abiotic stress tolerance, disease and pest resistance of the collection are described.  相似文献   

12.
土壤盐渍化严重威胁草坪草的可持续发展,选育和种植耐盐草坪草可改良和利用大面积盐渍土壤。以3种冷季型草坪草黑麦草(Lolium perenne L.)、高羊茅(Festuca arundinacea L.)和早熟禾(Poa pratensis L.)为试验材料,采用盆栽法研究不同浓度NaHCO3胁迫(0,0.2%,0.4%,0.6%,0.8%,1.0%)对3种冷季型草坪草生理生态特征的影响。结果表明:不同浓度NaHCO3胁迫下3种冷季型草坪草草坪外观质量、叶片萎蔫系数、叶片相对含水量、叶片叶绿素含量和K+含量均随着NaHCO3浓度的增加而逐渐降低,且浓度越高,下降越明显;0.4%~1.0%NaHCO3胁迫降低了3种冷季型草坪草的地上部分和根系干重,且随着NaHCO3浓度的增加,生长受到胁迫的抑制程度显著增大,根系部分的受抑制程度比地上部分更明显;不同浓度NaHCO3胁迫下3种冷季型草坪草叶片相对电导率、脯氨酸含量、丙二醛含量和Na+含量随着NaHCO3胁迫浓度的升高呈上升趋势,且浓度越高上升越明显;NaHCO3浓度0.4%时,3种冷季型草坪草已受到伤害;黑麦草、高羊茅和早熟禾在不同浓度NaHCO3胁迫下的隶属函数平均值均表现为早熟禾黑麦草高羊茅,说明3种冷季型草坪草抗NaHCO3胁迫的能力均为早熟禾强于黑麦草和高羊茅。  相似文献   

13.
Understanding the chronological changes in soil microbial properties of turfgrass ecosystems is important from both the ecological and management perspectives. We examined soil microbial biomass, activity and N transformations in a chronosequence of turfgrass systems (i.e. 1, 6, 23 and 95 yr golf courses) and assessed soil microbial properties in turfgrass systems against those in adjacent native pines. We observed age-associated changes in soil microbial biomass, CO2 respiration, net and gross N mineralization, and nitrification potential. Changes were more evident in soil samples collected from 0 to 5 cm than the 5 to 15 cm soil depth. While microbial biomass, activity and N transformations per unit soil weight were similar between the youngest turfgrass system and the adjacent native pines, microbial biomass C and N were approximately six times greater in the oldest turfgrass system compared to the adjacent native pines. Potential C and N mineralization also increased with turfgrass age and were three to four times greater in the oldest vs. the youngest turfgrass system. However, microbial biomass and potential mineralization per unit soil C or N decreased with turfgrass age. These reductions were accompanied by increases in microbial C and N use efficiency, as indicated by the significant reduction in microbial C quotient (qCO2) and N quotient (qN) in older turfgrass systems. Independent of turfgrass age, microbial biomass N turnover was rapid, averaging approximately 3 weeks. Similarly, net N mineralization was ∼12% of gross mineralization regardless of turfgrass age. Our results indicate that soil microbial properties are not negatively affected by long-term management practices in turfgrass systems. A tight coupling between N mineralization and immobilization could be sustained in mature turfgrass systems due to its increased microbial C and N use efficiency.  相似文献   

14.
Genetic Resources and Crop Evolution - The wild Malus germplasm is considered as a gene reservoir for various biotic and abiotic stresses tolerance/resistance genes, including important novel...  相似文献   

15.
Turfgrass cover is an inevitable component in the urban landscapes of the United Arab Emirates. Tolerance to abiotic stress like salt, drought, and high temperature is a potential factor to be considered in the selection of turfgrass for the landscapes in the arid regions. Three Seashore paspalum genotypes, four Bermudagrass cultivars along with tall fescue as a control were screened for enzymatic changes under four different saline irrigation levels of 5,000, 10,000, 15,000, and 20,000 mg L?1 of salinity. Irrigation with potable water served as the control. Turfgrasses were maintained in a field experiment under factorial randomized block design for a period of two years under sustained saline conditions by working out the leaching fraction to maintain the precise level of salinity in each treatment throughout the experimental period. The activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), polyphenol oxidase (PPO), and catalase (CAT) were assayed in each of the saline water treated turfgrass types. The SOD activity was found to be high in Yukon (bermudagrass) and Sea Dwarf paspalum. In the paspalum group, Salam and Sea Dwarf showed the highest SOD activity under saline condition. In Bermuda types, Yukon and SR 9554 showed the highest SOD activity compared to other bermuda types. Compared to other cultivars, Sea Isle 2000 (Paspalum type), SR 9554, and Yukon (Bermuda types) exhibited more APX activity without any significant differences among themselves. There was an elevated activity of POD initially, followed by gradual reduction upon increasing the salinity level. Salam cultivar maintained stable POD activity even at the elevated salinity levels. The paspalum types showed relatively high level of PPO activity compared to other types under salinity. Yukon cultivar showed a significantly higher activity of PPO when the salinity level was raised from 15,000 to 20,000 mg L?1. A significant increase with respect to CAT activity was exhibited in Sea Dwarf under elevated level of salinity. Saline water irrigation brought about a significant effect on the antioxidant enzyme systems to impart oxidative stress tolerance in turfgrass species.  相似文献   

16.
北京地区典型冷季型草坪草灌水量模拟   总被引:2,自引:0,他引:2  
为了减少北京地区草坪草灌水量、提高降水量的利用率,该文研究了充分利用降雨条件下的典型冷季型草坪草灌水量。根据典型冷季型草坪草(早熟禾、高羊茅)2003年的田间试验资料对灌溉制度模拟模型(ISAREG模型)进行了率定,然后用2004年的田间试验资料对ISAREG模型进行了验证,最后应用此模型对所研究的两种冷季型草坪草在干旱年、平水年和丰水年及不同养护条件下的灌水量进行了模拟研究。研究结果表明:生长季节内早熟禾、高羊茅的作物系数在0.5~1.0之间;在特级养护条件下,早熟禾和高羊茅所需灌水量分别为432~682 mm/a、462~752 mm/a;在一级养护条件下,早熟禾和高羊茅所需灌水量分别为252~432 mm/a、312~492 mm/a。研究结果可为北京地区冷季型草坪草的灌溉管理提供科学依据。  相似文献   

17.
我国过渡地带草坪草种选择及应用进展   总被引:8,自引:1,他引:8  
简述了我国过渡地带草坪草种选择及应用进展 ,分析了影响我国过渡地带草坪草种选择的因素以及草坪草种选择变化的内在规律 ,并指出未来草坪草种应用的发展趋势  相似文献   

18.
Plant growth can be an important factor regulating seasonal variations of soil microbial biomass and activity. We investigated soil microbial biomass, microbial respiration, net N mineralization, and soil enzyme activity in turfgrass systems of three cool-season species (tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and creeping bentgrass, Agrostis palustris L.) and three warm-season species (centipedegrass, Eremochloa ophiuroides (Munro.) Hack, zoysiagrass, Zoysia japonica Steud, and bermudagrass, Cynodon dactylon (L.) Pers.). Microbial biomass and respiration were higher in warm- than the cool-season turfgrass systems, but net N mineralization was generally lower in warm-season turfgrass systems. Soil microbial biomass C and N varied seasonally, being lower in September and higher in May and December, independent of turfgrass physiological types. Seasonal variations in microbial respiration, net N mineralization, and cellulase activity were also similar between warm- and cool-season turfgrass systems. The lower microbial biomass and activity in September were associated with lower soil available N, possibly caused by turfgrass competition for this resource. Microbial biomass and activity (i.e., microbial respiration and net N mineralization determined in a laboratory incubation experiment) increased in soil samples collected during late fall and winter when turfgrasses grew slowly and their competition for soil N was weak. These results suggest that N availability rather than climate is the primary determinant of seasonal dynamics of soil microbial biomass and activity in turfgrass systems, located in the humid and warm region.  相似文献   

19.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

20.
Abstract

Responses of photosynthesis, Superoxide dismutase activity, and disease tolerance of creeping bentgrass (Agrostis palustris Huds. A.) to soluble potassium silicate (20.8% SiO2) treatments was investigated under two fertilization regimes during 1997 and 1998. Potassium silicate was applied twice a month at 603 and 1205 mL 100 m?2 under high or low fertilization regimes in the field, sampled from which were subjected to low soil moisture in a greenhouse environment. Foliar application of silicate stimulated antioxidant superoxide dismutase (SOD) activity in the bentgarss, especially under the high fertilization regime. Silicate increased photosynthetic capacity (PC) and chlorophyll content when applied at 603 mL 100 m?2. Dollarspot disease incidence was significantly reduced with silicate treatment regardless of fertilization regime. Silicate did not significantly impact clipping weight. Under low soil moisture (‐0.05 MPa), silicate also enhanced SOD activity, PC, and chlorophyll content as well as root mass of bentgrass. Results suggest silicate may be used to enhance turfgrass drought and disease tolerance of turfgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号