首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To compare recovery times and quality following maintenance of anaesthesia with sevoflurane or isoflurane after a standard intravenous induction technique in horses undergoing magnetic resonance imaging (MRI). Study design Prospective, randomised, blinded clinical study. Animals One hundred ASA I/II horses undergoing MRI. Materials and methods Pre‐anaesthetic medication with intravenous acepromazine and romifidine was followed by induction of anaesthesia with diazepam and ketamine. The animals were randomised into two groups to receive either sevoflurane or isoflurane in oxygen. Horses were subjectively scored (0–5) for temperament before sedation, for quality of sedation, induction and maintenance and anaesthetic depth on entering the recovery area. Recoveries were videotaped and scored by an observer, unaware of the treatment, using two scoring systems. Times to the first movement, head lift, sternal recumbency and standing were recorded along with the number of attempts to achieve sternal and standing positions. Variables were compared using a Student t‐test or Mann–Whitney U‐test (p < 0.05), while the correlation between subjective recovery score and other relevant variables was tested calculating the Spearman Rank correlation coefficient and linear regression modelling performed when significant. Results Seventy‐seven horses entered the final analysis, 38 received isoflurane and 39 sevoflurane. Body mass, age and duration of anaesthesia were similar for both groups. There were no differences in recovery times, scoring or number of attempts to achieve sternal recumbency and standing between groups. Weak, but significant, correlations were found between the subjective recovery score for the pooled data from both groups and both temperament and time in sternal recumbency. Conclusions No differences in recovery times or quality were detected following isoflurane or sevoflurane anaesthesia after intravenous induction. Clinical relevance Sevoflurane affords no obvious advantage in recovery over isoflurane following a standard intravenous induction technique in horses not undergoing surgery.  相似文献   

2.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

3.
ObjectiveTo determine the haemodynamic effects of halothane and isoflurane with spontaneous and controlled ventilation in dorsally recumbent horses undergoing elective surgery.Study designProspective randomized clinical trial.AnimalsTwenty-five adult horses, body mass 487 kg (range: 267–690).MethodsHorses undergoing elective surgery in dorsal recumbency were randomly assigned to one of four treatment groups, isoflurane (I) or halothane (H) anaesthesia, each with spontaneous (SB) or controlled ventilation (IPPV). Indices of cardiac function and femoral arterial blood flow (ABF) and resistance were measured using transoesophageal and transcutaneous Doppler echocardiography, respectively. Arterial blood pressure was measured directly.ResultsFour horses assigned to receive isoflurane and spontaneous ventilation (SBI) required IPPV, leaving only three groups for analysis: SBH, IPPVH and IPPVI. Two horses were excluded from the halothane groups because dobutamine was infused to maintain arterial blood pressure. Cardiac index (CI) was significantly greater, and pre-ejection period (PEP) shorter, during isoflurane compared with halothane anaesthesia with both spontaneous (p = 0.04, p = 0.0006, respectively) or controlled ventilation (p = 0.04, p = 0.008, respectively). There was an association between CI and PaCO2 (p = 0.04) such that CI increased by 0.45 L minute−1m−2 for every kPa increase in PaCO2. Femoral ABF was only significantly higher during isoflurane compared with halothane anaesthesia during IPPV (p = 0.0006). There was a significant temporal decrease in CI, but not femoral arterial flow.ConclusionThe previously reported superior cardiovascular function during isoflurane compared with halothane anaesthesia was maintained in horses undergoing surgery. However, in these clinical subjects, a progressive decrease in CI, which was independent of ventilatory mode, was observed with both anaesthetic agents.Clinical relevanceCardiovascular function may deteriorate progressively in horses anaesthetized for brief (<2 hours) surgical procedures in dorsal recumbency. Although cardiovascular function is superior with isoflurane in dorsally recumbent horses, the need for IPPV may be greater.  相似文献   

4.
Anaesthetic records of horses with colic anaesthetised between June 1987 and May 1989 were reviewed. pH and blood gas analyses were performed during 157 operations from which the horses were allowed to recover. A PaO2 of 8.0 kPa or less was measured during anaesthesia in seven of these horses. The horses were of different breeds, ages and sexes. Anaesthesia was induced with xylazine, guaifenesin and ketamine in four horses and with xylazine, guaifenesin and thiobarbiturate in three horses. Anaesthesia was maintained with inhalation anaesthetic agent and oxygen: isoflurane in five horses, halothane in one horse, and initially halothane but later isoflurane in one horse. Systolic arterial pressures during anaesthesia ranged from 80 to 150 mmHg, diastolic arterial pressures were between 60 and 128 mmHg, and heart rates were between 28 and 44 beats /min. Controlled ventilation was initiated at the start of anaesthesia. PaCO2 exceeded 6.7 kPa in three horses but was subsequently decreased by adjustment of the ventilator. PaO2 of 8.0 kPa or less was measured during early anaesthesia, with one exception, and persisted for the duration of anaesthesia. The horses' inspired air was supplemented with oxygen during recovery from anaesthesia, at which time measurement of blood gases in three horses revealed no increase in PaO2. Recovery from anaesthesia was uneventful. The surgical problems involved primarily the large intestine in five horses and the small intestine in two horses. Six horses were discharged from the hospital alive; one horse was reanaesthetised later the same day and destroyed without regaining consciousness. We concluded that none of the objective values recorded during the pre-anaesthetic evaluation could have been used to predict the complication of intraoperative hypoxaemia. We observed that once hypoxaemia developed it persisted for the duration of anaesthesia and even into the recovery period when the horses were in lateral recumbency and regaining consciousness. We assume that the altered metabolism from anaesthetic agents and hypothermia combined with adequate peripheral perfusion contributed to the lack of adverse consequences in six of the horses. The contribution of hypoxaemia to the deteriorating condition of the seventh horse is speculative.  相似文献   

5.
Objective— Recovery is one of the more precarious phases of equine general anesthesia. The quality and rate of recovery of horses from halothane and isoflurane anesthesia were compared to determine differences in the characteristics of emergence from these commonly used inhalant anesthetics. Experimental Design— Prospective, randomized blinded clinical trial. Sample Population— A total of 96 Thoroughbred and 3 Standardbred racehorses admitted for elective distal forelimb arthroscopy. Methods— All horses were premedicated with intravenous xylazine, induced with guaifenesin and ketamine, and maintained on a large animal circle system fitted with an out of the circle, agent specific vaporizer. Recoveries were managed by a blinded scorer with a standardized protocol. A 10 category scoring system was used to assess each horse's overall attitude, purposeful activity, muscle coordination, strength and balance from the time of arrival in recovery to standing. Times to extubation, sternal recumbency and standing were recorded. Median recovery scores and mean times to extubation, sternal and standing were compared using the Mann‐Whitney U test and student's t test, respectively. Results— The median score for horses recovering from halothane was lower (20.0; range, 10 to 57) than that for horses recovering from isoflurane (27.5; range, 10 to 55). Horses in the two groups were extubated at similar mean times (halothane, 11.3 ± 5.5 and isoflurane, 9.5 ± 5.2 minutes ) but horses recovering from isoflurane achieved sternal recumbency (halothane, 37.7 ± 12.1 and isoflurane, 24.7 ± 8.8 minutes ) and stood (halothane, 40.6 ± 12.9 and isoflurane, 27.6 ± 9.6 minutes ) sooner than those recovering from halothane. Conclusions— The recovery of horses from isoflurane anesthesia was more rapid but less composed than that from halothane. Clinical Relevance— The quality of recovery following isoflurane was worse than after halothane anesthesia using the criteria chosen for this study. However, the range of recovery scores was similar for both groups and all horses recovered without significant injury.  相似文献   

6.
OBJECTIVE: To compare the effects of spontaneous breathing and mechanical ventilation on haemodynamic variables, including muscle and skin perfusion measured with laser Doppler flowmetery, in horses anaesthetized with isoflurane. STUDY DESIGN: Prospective controlled study. ANIMALS: Ten warm-blood trotter horses (five males, five females). Mean mass was 492 kg (range 420-584 kg) and mean age was 5 years (range 4-8 years). MATERIALS AND METHODS: After pre-anaesthetic medication with detomidine (10 microg kg(-1)) anaesthesia was induced with intravenous (IV) guaifenesin and thiopental (4-5 mg kg(-1) IV) and maintained using isoflurane in oxygen. The horses were positioned in dorsal recumbency. In five animals breathing was initially spontaneous (SB) while the lungs of the other five were ventilated mechanically using intermittent positive pressure ventilation (IPPV). Total anaesthesia time was 4 hours with the ventilatory mode changed after 2 hours. During anaesthesia, heart rate (HR) cardiac output (Qt) stroke volume (SV) systemic arterial blood pressures (sAP), and pulmonary arterial pressure (pAP) were recorded. Peripheral perfusion was measured in the semimembranosus and gluteal muscles and on the tail skin using laser Doppler flowmetry. Arterial (a) and mixed venous (v) blood gases, pH, haemoglobin concentration [Hb], haematocrit (Hct), plasma lactate concentration and muscle temperature were measured. Oxygen content, venous admixture (s/Qt) oxygen delivery (DO(2)) and oxygen consumption (VO(2)) were calculated. RESULTS: During mechanical ventilation, HR, sAP, pAP, Qt, SV, Qs/Qt and PaCO(2) were lower and PaO(2) was higher compared with spontaneous breathing. There were no differences between the modes of ventilation in the level of perfusion, DO(2), VO(2), [Hb], (Hct), or plasma lactate concentration. After the change from IPPV to SB, left semimembranosus muscle and skin perfusion improved, while muscle perfusion tended to decrease when SB was changed to IPPV. Low-frequency flow motion was seen twice as frequently during IPPV compared with SB. CONCLUSIONS: Mechanical ventilation impaired cardiovascular function compared with SB in horses during isoflurane anaesthesia. Muscle and skin perfusion changes occurred with ventilation, although further studies are needed to elucidate the underlying mechanisms.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Approximately 1 in 100 horses suffer unexpectedly from anaesthetic-related death. Identification and use of the safest anaesthetic drugs should support this aim. Experimental evidence has suggested that isoflurane should be a safer maintenance agent in equine anaesthesia than halothane. HYPOTHESIS: The death rate would be reduced in horses being maintained with isoflurane compared to halothane. METHODS: A multicentre randomised controlled trial was undertaken to compare the effects of isoflurane and halothane for maintenance of equine anaesthesia for all types of operation. Data were analysed from 8242 horses in which anaesthesia was maintained with either halothane or isoflurane using mixed effects logistic regression models. RESULTS: No overall benefit of either drug was detected. However, although not part of the primary hypothesis, data showed that the overall death rate was significantly reduced in horses age 2-5 years with isoflurane and that death from cardiac arrest was also reduced with isoflurane, particularly in high risk cases. CONCLUSIONS AND POTENTIAL RELEVANCE: Halothane remains an acceptable anaesthetic for maintenance of anaesthesia in horses, but isoflurane may be safer in the young horse and in high risk cases.  相似文献   

8.
Radiographic evidence of pulmonary dysfunction in anaesthetised cattle   总被引:2,自引:0,他引:2  
The effects of fasting, sedation, recumbency and general anaesthesia on the radiographic appearance of the thoracic cavity of adult cattle were investigated. Fasting and sedation had little effect on the visible lung field but recumbency and general anaesthesia were followed by a reduction in lung field area. The reduction in area appeared to be greatest in the more dependent parts of the lung and was associated with the development of a persistent radiographic opacity. The changes were similar to those previously observed in horses.  相似文献   

9.
OBJECTIVE: To (1) evaluate a purpose-built chamber for inducing isoflurane anaesthesia in sea lions and (2) assess isoflurane as an anaesthetic for dental surgery in these species. STUDY DESIGN: Prospective case study. ANIMALS: Four sea lions, aged between 5 and 12 years and weighing 74-110 kg, with dental disease. METHODS: Sea lions were restrained in a custom-built acrylic chamber into which 5% isoflurane (vapourizer setting) was delivered in O(2) (30 L minute(-1)) from three anaesthetic machines. When the animals were recumbent, the chamber was opened and induction completed using a face mask. Anaesthesia was maintained with 1.5-3.0% isoflurane (vapourizer setting) for 10-15 minutes and after tracheal intubation, was maintained with 1.0-3.0% isoflurane (end-tidal) for 41-255 minutes, using a partial rebreathing system with CO(2) absorption. RESULTS: During induction, the sea lions attempted to support their weight on their thoracic limbs before slipping into sternal or lateral recumbency. Sea lions underwent either root canal surgery, 'crowning' or canine tooth extraction. The animals were completely unresponsive during these operations and apnoea was never encountered at any point during anaesthesia. After surgery, the sea lions were placed into transport cages and their tracheae extubated once they began to move their heads. Thereafter, recovery from anaesthesia was smooth and no signs of distress were observed. Animals were able to raise their forequarters using their flippers within 1 hour of the operation and were returned to the aquarium about 2 hours after surgery. CONCLUSIONS AND CLINICAL RELEVANCE: The purpose-built induction chamber is safe for inducing isoflurane anaesthesia in spontaneously breathing sea lions and isoflurane is an effective anaesthetic in this species.  相似文献   

10.
Observations were made on horses spontaneously breathing oxygen, with halothane at a constant end tidal concentration. The horses were positioned in dorsal recumbency for the first 45 minutes of each anaesthetic episode during which the arterial oxygen tension (PaO2) was found to peak and then decline. The remaining 60 minutes of each anaesthesia was used to test the effect of various manoeuvres on PaO2. The PaO2 of horses decreased further both when remaining in dorsal recumbency and when repositioned in right or left recumbency. In contrast, placing the horses in sternal recumbency for these remaining 60 minutes caused the PaO2 to rise rapidly providing evidence for redistribution of ventilation. Replacing some inspired oxygen with less absorbable nitrogen did not improve PaO2 in dorsal recumbency. Thus there was no evidence that the low PaO2 of dorsal recumbency was associated with alveoli that had collapsed because of gas absorption.  相似文献   

11.
OBJECTIVE: To discern the effects of anaesthesia protocols and decreasing core body temperature on time to recovery from general anaesthesia. MATERIALS AND METHODS: Healthy adult dogs undergoing desexing surgery were enrolled. More excitable dogs were premedicated with intramuscular acepromazine and morphine; calmer dogs were not premedicated. Anaesthesia was induced using halothane, isoflurane or sevoflurane delivered by mask, or by intravenous propofol, and maintained in standard fashion using one of the three inhalant agents. Thermostat controlled heat mats were used during surgical preparation and surgery. Oesophageal temperature was recorded throughout surgery. The time from cessation of anaesthetic administration until the dog successfully raised itself to sternal recumbency was considered the time of recovery. RESULTS: Sixty-nine dogs completed the study, 42 males anaesthetised for 60.4 +/- 20.5 min, and 27 females anaesthetised for 85.4 +/- 33.2 min. Oesophageal temperature at the end of surgery was 36.8 +/- 0.80 degrees C. Oesophageal temperature had a significant effect on recovery time, with lower temperatures contributing to slower recoveries. Premedication significantly lengthened recovery times. The choice of induction or maintenance anaesthetic agent had no effect on recovery time. DISCUSSION: Hypothermia is a common complication of general anaesthesia and surgery. Amongst other deleterious effects, it is associated with slower recovery from anaesthesia, likely due to a number of different mechanisms.  相似文献   

12.

Objective

To evaluate the cardiorespiratory effects of a 7° reverse Trendelenburg position (RTP) in anaesthetized horses.

Study design

Randomized, non-blinded clinical trial.

Animals

A total of 125 horses undergoing elective surgery in dorsal recumbency.

Methods

Horses were allocated to one of three weight classes and assigned to be positioned either on a horizontal table or on a table in 7° RTP, according to a randomized block design. In all horses, anaesthesia was maintained with isoflurane in oxygen and a constant rate infusion of romifidine. All horses were mechanically ventilated throughout anaesthesia, and routine cardiovascular monitoring and arterial blood gas analysis were performed at 15-minute intervals and relevant variables calculated. Data from the first 60 minutes of anaesthesia were compared between both positions using a mixed model analysis of variance.

Results

A significant interaction was found between position and weight class for the alveolar to arterial oxygen tension gradient and F-shunt: these variables were lower in RTP than in horizontal position in the two lowest weight classes and vice versa in the highest weight class. Arterial oxygen tension and oxygenation indices were significantly worse in the horses in the higher weight classes.

Conclusions and clinical relevance

A 7° RTP did not result in clinically relevant changes in gas exchange or cardiovascular function. Horses with a higher body weight are at increased risk for hypoxaemia during anaesthesia in dorsal recumbency.  相似文献   

13.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery.  相似文献   

14.
A new inhalant anaesthetic, sevoflurane, was used to maintain anaesthesia in 40 animals (2 mules and 38 horses of 9 breeds) presented for various surgical procedures. Eighteen mares, 11 stallions and 11 geldings underwent 6 orthopaedic and 34 soft tissue operations. Induction of anaesthesia was achieved with combinations of xylazine (0.5–1.1 mg/kg), diazepam (0.03–0.1 mg/kg), butorphanol (0.02 mg/kg), guaifenesin (50–84 mg/kg) and ketamine (1.1 mg/kg). Following tracheal intubation, a surgical plane of anaesthesia was maintained with sevoflurane in oxygen delivered from a precision vaporiser. Temperature, ECG, arterial blood pressure and expired gas composition were monitored. Mechanical ventilation was used in most animals (n=37) because of hypoventilation (PaCO2 > 7.31 kPa [55 mmHg]). Following surgery, horses were moved to a recovery room and allowed to recover alone (n=36) or with assistance (n=4). Time to sternal recumbency, standing, the time when satisfactory coordination was present (after standing) and the number of attempts to stand were recorded. The quality of recovery was scored on a 1 (best) to 6 (worst) scale. Mean blood pressures at 30, 60, 90, 120 and 150 min of anaesthesia were 72, 73, 74, 75 and 72 mmHg, respectively. Systolic and diastolic pressures at 30, 60, 90, 120 and 150 min of anaesthesia were 97, 97, 94, 96, 93 and 59, 63, 64, 68, 67 mmHg, respectively. Dobutamine was used in 23 horses to maintain mean arterial blood pressure > 60 mmHg. Mean heart and respiratory rates at 30, 60, 90, 120 and 150 min of anaesthesia were 36, 38, 39, 38 and 38 beats/min, and 9, 8, 8, 8 and 8 breaths/min. Mean duration of anaesthesia was 121 rnin (sd: 56 min), mean time to sternal recumbency was 27 min (sd: 13 min), average time to standing (all horses) was 33 min (sd: 12 min) and time to satisfactory coordination was 44 min (sd: 13 min). Most horses (n=37) received xylazine during recovery (mean dose 0.18 mg/kg iv). The median number of attempts to sternal recumbency and standing were 1.0 (range; 1–7) and 2.0 (range; 1–20), respectively, while the median recovery score was 1.5 (range; 14). The ‘depth’ of anaesthesia was easy to control and recoveries were generally very satisfactory.  相似文献   

15.
The cardiovascular function of horses was less depressed during anaesthesia with isoflurane than during anaesthesia with halothane. Muscular microcirculation measured by laser Doppler flowmetry was significantly greater in horses anaesthetised with isoflurane.  相似文献   

16.
Dogs were given medetomidine (10 microg/kg body weight, intramuscularly) followed in 10 minutes by either ketamine (4 mg/kg body weight, intravenously) or isoflurane mask induction and maintained on isoflurane for 30 minutes. Medetomidine induced lateral recumbency in all dogs. Endotracheal intubation was faster and smoother when dogs were given ketamine than when induced with isoflurane. Analgesia was excellent in all groups. Respiratory depression was more profound when dogs were given ketamine. Recovery quality was smooth and similar among all groups. Medetomidine-premedicated dogs could be induced with either ketamine or isoflurane and maintained on 1.3% isoflurane to achieve good analgesia with smooth recovery from anesthesia.  相似文献   

17.
Objective To determine the minimum alveolar concentration (MAC) of isoflurane in cattle.
Study design Prospective study.
Animals Sixteen healthy adult female Holstein-Friesian cattle weighing 612 ± 17 kg (× ± SEM) and aged 5.7 ± 0.9 years old.
Methods The unsedated cattle were restrained in right lateral recumbency using a rope harness technique. Anaesthesia was induced with isoflurane (ISO) in oxygen via a face mask connected to a large-animal, semiclosed anaesthetic circle system. Each cow was intubated with a cuffed orotracheal tube (25 mm ID). Inspired and end-tidal ISO were monitored using a calibrated infra red analyser with a methane filter. The MAC of ISO that prevented gross purposeful movement in response to a tail and dewclaw clamp was determined. The time from the start of ISO administration to intubation, the time interval between discontinuance of ISO and the time the animal regained sternal recumbency, were recorded. Time to standing and quality of recovery were also recorded.
Results The time from the start of ISO administration to tracheal intubation was 18.68 ± 2.77 minutes. The MAC of ISO in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). Time to sternal recumbency after 90 ± 16 minutes of anaesthesia from intubation was 4.60 ± 0.58 minutes and time to standing was 6.70 ± 1.02 minutes. All cattle were extubated when they regained sternal recumbency.
Conclusion The MAC of isoflurane in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). ISO provided a smooth induction to, and rapid recovery from, anaesthesia.
Clinical relevance Knowledge of the MAC of ISO in cattle will facilitate its appropriate clinical use.  相似文献   

18.
OBJECTIVE: To investigate the effects of peri-operative morphine on the quality and duration of recovery from halothane anaesthesia in horses. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-two client owned horses, ASA category I or II. METHODS: Horses undergoing elective surgical procedures were divided into two groups and paired according to procedure, body position during surgery, body mass and breed. Group M+ received morphine by intravenous injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) during anaesthesia. Group M- received the same anaesthetic agents except that morphine was excluded. At the end of surgery, the horses were placed in a recovery box and allowed to recover without assistance. Recoveries were recorded on videotape, beginning when the anaesthetist left the recovery box, and ending when the horse stood up. Recoveries were assessed from digital video recordings by three observers, unaware of treatment. The time to first movement, attempting and attaining sternal recumbency and standing were recorded. The quality of various aspects of the recovery was assessed to produce a total recovery score; high numerical values indicate poor recoveries. The duration of anaesthesia and the total dose of morphine administered were recorded. RESULTS: The mean morphine dose (95% CI) was 147 (135-160) mg [equivalent to 0.27 (0.25-0.29) mg kg(-1)]. The recovery scores (median, 95% CI) for the M- and M+ groups were 25, 19-41 and 20, 14-26, respectively. Total score increased as duration of anaesthesia increased, independent of treatment. Untreated (M-) horses made more attempts to achieve sternal recumbency: mean number of attempts (95% CI) for M- was 4.5 (2.7-6.2) compared with 2.0 (1.4-2.6) (M+). Untreated horses made more attempts to stand (2.1, 1.6-2.6) compared with the morphine recipients (1.3, 1.1-1.5). Time to standing (in minutes) was significantly (p = 0.0146) longer for the untreated (31.3, 24.3-38.3) compared with treated animals (26.6, 20.9-32.3). The interval between the first movement in recovery to the time at standing was significantly (p < 0.001) longer for M- (14.5, 12.1-16.9 minutes) compared with M+ animals (7.4, 5.0-9.8 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: Recoveries from anaesthesia in the morphine recipients were characterized by fewer attempts to attain sternal recumbency and standing, and a shorter time from the first recovery movement to the time of standing.  相似文献   

19.
The present report describes two surgical cases involving the development of sudden glycosuria after isoflurane anaesthesia, despite the dogs having normal blood glucose levels and renal glucose reabsorption. The glycosuria manifested 1 day after surgery and resolved spontaneously within 2 days in both cases. Considering that the surgeries (subcutaneous mandibular mass removal and fracture repair) were unrelated to the kidneys, and there were no remarkable events during anaesthesia, the glycosuria may have been associated with the isoflurane anaesthesia. There have been several previous reports of glycosuria in human patients following transient proximal tubule dysfunction due to volatile anaesthetics. This case report suggests the possibility of transient renal dysfunction following isoflurane anaesthesia in these two clinically healthy dogs. However, considering the observational nature of this report, it can not be excluded that any other procedure performed in these animals was responsible of the observed glycosuria.  相似文献   

20.
Genotoxic DNA damage due to inhalation anaesthesia has been demonstrated in human lymphocytes. In order to evaluate anaesthesia-associated changes in cell-mediated immunity on the basis of a potential DNA damage as a health risk in horses, single cell gel electrophoresis and lymphocyte proliferation assay were performed on equine lymphocytes which were obtained before, during and after regular castration under inhalation anaesthetic. No significant lymphocytic DNA damage due to isoflurane anaesthesia was observed, whereas lymphocyte proliferative reactivity and lymphocyte counts decreased significantly (p≤0.05) during and after anaesthesia. The present study thus indicates that the combined anaesthesia does not result in significant DNA damage, which hence cannot be held responsible for the observed changes in the immune response of equine lymphocytes. However, the recognized compromises of immune function ought to be considered especially in immunologically challenged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号