首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low temperature storage is widely used to maintain the quality of postharvest fruit and extend their shelf-life. In this study, changes in specific metabolites and protein expression profiles of grape berries under cold storage were investigated by liquid chromatography and proteomic studies, respectively. During cold storage, total soluble solids and reducing sugars accumulation was accompanied by a decline in organic acids and phenols contents. A comparative analysis of the proteomes of grape berries during cold storage was performed using a two-dimensional electrophoresis (2-DE) proteomic approach. Seventy-nine differentially regulated proteins during cold storage were successfully identified by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, and classified into eight main categories based on their biological function. Down-regulation of proteins associated with glycolysis and the Krebs cycle, and up-regulation of cell wall polysaccharide degradation-related enzymes provided molecular evidence that soluble sugar and carbohydrate metabolism play a crucial role in postharvest regulation. In addition, cold storage increased the expression abundance of several stress related proteins such as heat shock proteins, proteasome and antioxidant enzymes, suggesting a physiological adaptation to low temperature was induced in grape berries. This study contributes to a better understanding of the cellular events in grape berries under cold storage and provides potentially useful information for maintaining fruit quality and minimizing postharvest losses.  相似文献   

2.
Dehydration accelerates respiration in postharvest sugarbeet roots   总被引:1,自引:0,他引:1  
Sugarbeet (Beta vulgaris L.) roots lose water during storage and often become severely dehydrated after prolonged storage and at the outer regions of storage piles which have greater wind and sun exposure. Sucrose loss is known to be elevated in dehydrated roots, although the metabolic processes responsible for this loss are unknown. To identify processes that contribute to sucrose loss in dehydrated roots, respiration rate, cellular electrolyte leakage, and sucrolytic enzyme activities were determined in roots of two varieties (VDH 66156 and Beta 4797R) during 4 weeks of 10 °C storage at high (85%) and low (40%) relative humidities. Roots stored at 40% relative humidity dehydrated significantly and lost almost 50% of their weight after 4 weeks of storage. Electrolyte leakage increased in these roots, indicating that dehydration damaged cellular membranes. Respiration rate generally increased in roots stored at 40% relative humidity compared to roots stored at 85% relative humidity. The increase in respiration rate was positively correlated with root weight loss and electrolyte leakage. Respiration rate was most closely associated with electrolyte leakage, however, suggesting that elevations in respiration rate were not due to dehydration, but to the membrane damage that occurred in response to dehydration. Activities of the sucrose-degrading enzymes, sucrose synthase, alkaline invertase and soluble acid invertase, were unaltered by dehydration. Alterations in sucrolytic enzyme activities, therefore, were not needed to provide for the increased demand for respiratory substrates in dehydrated roots. These results suggest that storage at low relative humidity alters the postharvest physiology of sugarbeet roots by increasing the rate of weight loss, reducing membrane integrity, and accelerating root respiration rate.  相似文献   

3.
Fifty-one endophytic isolates of Aureobasidium pullulans were obtained from the flesh of sweet cherries and extensively screened to evaluate their biocontrol activity against postharvest rots of sweet cherries and table grapes. Preliminary analysis of all isolates by randomly amplified polymorphic DNA (RAPD) with three different primers showed the presence of a high genetic variability and enabled isolates not showing any genetic difference to be discarded. Thirty-five isolates with different RAPD electrophoresis patterns had a wide range of biocontrol activity against Botrytis cinerea and Monilinia laxa on single-wounded berries of sweet cherries and table grapes with a reduction of decay from 10 to 100%. Two isolates (533 and 547) significantly reduced B. cinerea on table grape berries also when applied 6, 12, and 24 h after the pathogen inoculation. In a 2-year period of investigation (1998–1999), a reduction of total rots ranging from 32 to 80% (sweet cherries) and from 59 to 64% (table grape) was achieved with isolates 533 and 547 applied after harvest. Preharvest applications of isolate 547 significantly reduced postharvest rots of sweet cherries and table grapes by 47 and 38%, respectively. On the whole, isolates 533 and 547 were more effective than A. pullulans L47, a biocontrol agent of postharvest diseases with a known activity. Population studies demonstrated that isolate 547 was able to survive under field conditions, to increase its population during cold storage, and to penetrate the flesh of sweet cherries when applied during flowering.  相似文献   

4.
采前喷施壳聚糖和油菜素内酯对葡萄采后落果的影响   总被引:1,自引:0,他引:1  
以新疆无核白葡萄为试材,采前喷施油菜素内酯(BRs)和壳聚糖(CH),观察贮藏期葡萄落果率变化,并分析对葡萄品质和衰老相关酶活的影响。结果表明,两种处理在贮藏前期均能有效降低贮藏期葡萄落果率,壳聚糖效果好于油菜素内酯。二者均降低了果实酸度,提高了果实糖酸比,对果实总维生素C(抗坏血酸)含量没有影响,但明显提高了VC的还原度,使PG、POD和LOX等果实成熟衰老相关酶的活力高峰向后推迟了15~30天。推论BRs和CH可能是通过延迟无核白葡萄果实成熟衰老进程来减少落果,也暗示了无核白葡萄迅速的成熟可能是导致果实过早脱落的原因。  相似文献   

5.
为了明确玉米响应PEG胁迫的关键表达基因,比较PEG胁迫下玉米基因表达的差异,本实验利用RNA-seq对正常灌溉和干旱胁迫的玉米进行转录本测序和数据分析,共获得12358个差异表达基因,其中5275个基因为上调表达,7083个基因为下调表达。对差异表达基因进行COG功能分类,共得到23个不同的COG功能,其中翻译后修饰,蛋白质转换,伴随蛋白681个,占7.74%;信号传导机制功能有转录本675个,占7.67%;转录506个,占5.75%。KEGG通路显著富集到光合作用-天线蛋白、光合生物的固碳作用、卟啉和叶绿素代谢、脂肪酸降解、精氨酸和脯氨酸代谢、磷酸肌醇信号等生命代谢途径。  相似文献   

6.
小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析   总被引:1,自引:0,他引:1  
小麦叶绿素缺失突变体Mt135自交后代稳定表现绿株、条纹株和白化株3种类型, 其中条纹株白色组织和白化株的叶绿体数目和结构发生突变, 完全失去光合能力。为研究该突变体叶绿体基因表达与光合作用的关系, 采用实时荧光定量PCR技术, 分析了白化株和条纹株的叶绿体基因表达。在白化株中共检测到40个差异表达基因, 涉及4类功能(编码光反应相关蛋白、编码叶绿体内能量代谢相关酶、核糖体合成和tRNA合成), 包括18个上调表达和22个下调表达基因;在条纹株中共检测到13个上调表达基因, 其表达变化趋势与在白化株中一致。白化株的差异表达基因中, 编码光系统II、I结构蛋白的psb、psa及ycf等基因家族的基因表达量显著下调;多个编码核糖体蛋白大、小亚基的基因表达量改变, 尤其是核糖体蛋白小亚基编码基因rps14和23S rRNA的编码基因23S rDNA表达量显著下调。推测Mt135突变性状与参与光反应相关蛋白的编码基因、叶绿体内能量代谢相关酶的编码基因、核糖体合成相关基因以及tRNA合成相关基因表达量的改变密切相关。  相似文献   

7.
The use of a heterologous fruit microarray system to identify differentially expressed genes between strawberry cultivars with different responses to 20 kPa CO2 (balance air) during storage has been evaluated. Specifically, a tomato cDNA microarray containing approximately 12,000 ESTs (representing 8700 unigenes) was hybridized with strawberry cDNA populations to compare gene expression differences between two cultivars: ‘Jewel’, a cultivar that accumulates acetaldehyde and ethanol in response to elevated CO2 during storage, and ‘Cavendish’ that does not accumulate these compounds under the same storage conditions. A set of 80 tomato gene sequences gave differential hybridization signals between the two strawberry cultivar probes when they were stored in CO2 for 48 h, suggesting homologous strawberry genes with differential expression. Within each cultivar, when RNA from fruit stored in air was compared with that from fruit stored in CO2, 168 sequences suggested differential expression in ‘Jewel’, but only 51 were differentially expressed in ‘Cavendish’ fruit. Strawberry genes with putative homologies to enzymes involved in cell wall metabolism, ethylene action and stress were implicated by the tomato array. This research not only demonstrates the usefulness of using a heterologous microarray platform from a model species (tomato) to study a complex process in strawberry, a crop of economic importance, for which genomic resources are still limited, but also provides a foundation for investigating the molecular basis of responses to elevated CO2 during strawberry postharvest storage.  相似文献   

8.
花生干旱胁迫响应基因的数字表达谱分析   总被引:3,自引:0,他引:3  
以抗旱性强的花生品种丰花5号为材料,利用Solexa高通量测序技术对15% PEG处理后的花生叶片cDNA文库进行差异基因表达谱分析。结果表明,转录组基因表达表现出高度的不均一性和冗余性,低于10个拷贝的标签占总标签种类的73.1%,但其表达量只占总标签表达量的9.0%。根据已知序列信息鉴定出935个差异表达基因,其中64.5%下调表达。基因功能分析表明,差异表达基因广泛涉及糖、蛋白、核酸和脂类等生物大分子代谢、能量代谢以及次生代谢过程。在花生干旱响应基因表达谱分析中,发现9个类黄酮代谢相关基因在干旱胁迫下显著上调表达,其中4个编码类黄酮合成酶类,3个编码甲基转移酶,2个编码MYB转录因子。通过半定量RT-PCR对花生苯丙氨酸解氨酶基因(AhPAL)表达分析表明,15%PEG干旱胁迫6 h诱导该基因显著表达。推测类黄酮代谢在花生干旱胁迫响应中起重要作用。  相似文献   

9.
高压静电场能够诱导采后葡萄果实多酚类物质积累,为实现优化和准确调控葡萄果实总黄烷-3-醇积累量,构建葡萄果实总黄烷-3-醇含量在高压静电场作用下随时间变化的连续模型.首先,以酿酒葡萄赤霞珠为试材,选用-2 kV/cm高压静电场,分别等时间间隔和随机时间间隔对总黄烷-3-醇含量取样,采用DMACA法获得两组数据;其次,根...  相似文献   

10.
11.
旨在获得黄精转录组数据库并挖掘参与其种子发育和休眠解除相关基因,以休眠解除前后的黄精种胚为试材,利用新一代高通量测序手段对供试样品进行转录组测序,并进行系统的生物信息学分析。黄精种子休眠解除前后样品中共得到79716个差异表达基因,上调的表达基因有60074个,下调的表达基因有19642个。休眠解除前后的黄精种胚中共有130284个差异表达基因被GO功能注释到生物进程、分子功能和细胞组分3个大类56个亚类,注释的差异表达基因与代谢过程、生物调控、细胞组分合成和酶催化活性等密切相关。KEGG代谢通路结果表明,共有65038个差异表达基因,涉及138个代谢通路,主要参与碳代谢、次生代谢产物的生物合成和多糖的代谢。基于KEGG数据库中注释结果,共发现15条与黄精种胚休眠解除相关的代谢通路。黄精种子发育与休眠解除过程,大量的种胚形态建成、多糖分解及蛋白质合成差异基因参与表达,并涉及到多个代谢途径的相互作用,构成复杂的休眠解除调控网络。  相似文献   

12.
为揭示温敏不育系PK3-12S育性转换机制,本研究以白菜型冬油菜温敏不育系PK3-12花药为材料,采用2-DE和LC-MS/MS质谱鉴定等差异蛋白组学方法,分离鉴定了PK3-12在不育/可育条件下花药差异表达蛋白质,并对差异表达蛋白进行了生物信息学分析;进而采用RT-PCR检测了PK3-12在不育/可育条件下花蕾发育进程中差异蛋白编码基因表达量变化。结果表明,高温不育条件下, PK3-12花药形态瘪小,药室有少量败育花粉,育性转换受1对隐性基因控制,表达变化量在2倍以上差异蛋白质点31个,其中增量表达蛋白质点6个,减量表达蛋白质点11个,表达完全抑制蛋白点12个,不育花药特异表达蛋白点2个。质谱鉴定出15个差异蛋白质,参与信号转导通路、二羧基乙醛酸代谢、糖酵解代谢、次生合成代谢、氨基酸生物合成、分支酸生物合成、碳代谢途径等细胞过程。Rubisco亚基连接蛋白编码基因BrrbcL开放读码框(open reading frame, ORF)长度为1095 bp,编码364个氨基酸;与可育花蕾相比,发育进程中不育花蕾BrrbcL基因、膜联蛋白基因(ANN)、BetVI过敏原家族基因(BetVI)表达明显下调,表明上述基因可能参与了温敏不育系PK3-12S育性的转换。  相似文献   

13.
Firmness is an essential quality parameter of table grapes (Vitis vinifera) for consumers, with grape bunches that contains soft berries less preferred, resulting in a reduction in the market price. The softening of grape berries has been commonly associated with cell walls, especially the disassembly of pectic polysaccharides. However, the process of berry softening is not completely understood. To investigate the softening process of grape berries, we compared the Thompson Seedless variety, which suffers significant economic losses due to fruit softening, and NN107, a new variety with a significantly higher level of berry firmness. The composition of the cell wall during the berry development of these two grape varieties was compared. NN107 berries had a greater amount of calcium and uronic acids in the cell wall material than Thompson Seedless grapes, suggesting a special role for calcium bridge formation in NN107. Additionally, polyacrylamide carbohydrate electrophoresis (PACE) analysis suggested differences between these varieties in pectin structure. Thompson Seedless grapes showed increased pectolyase hydrolysable site dynamics in the cell wall material and higher polygalacturonase activity than NN107. Immunohistochemistry focusing on the pectin structure confirmed the roles of both calcium bridge formation and cell wall integrity as they relate to a firmer grape berry phenotype.  相似文献   

14.
官梅  李栒  官春云 《作物学报》2010,36(6):968-978
采用基因芯片技术对甘蓝型油菜高油酸(71.71%)和低油酸(55.6%)材料进行分析,探索油酸的差异表达基因。结果检测到差异表达基因562个,其中上调表达基因194个,下调表达基因368个。以基因芯片中油菜上调基因NM_100489和下调基因NM_130183为材料,用实时荧光定量方法验证基因芯片的结果,二者完全相符。根据基因芯片的实验结果,采用Go注释系统和数据库查询对562个差异表达基因进行功能注释表明,主要为各种酶类、结合功能、转录调控、代谢等,还有的功能未知或与糖代谢及脂肪酸合成相关,其中丙酮酸激酶、果糖二磷酸、酰基传递/酰基ACP硫脂酶、作用于酯键的水解酶、Δ9硬脂酰-乙酰载体蛋白去饱和酶(ADS1)、Δ9酰基-油脂减饱和酶2(ADS2)、ω-3脂肪酸减饱和酶(fad3)等被鉴定为差异表达基因。  相似文献   

15.
气候变暖及大气CO2浓度升高成为全球共识,由此增加极端天气气候事件(干旱)发生的频率和强度并对大豆生产带来不确定性。本研究通过大豆表型和叶片转录组测序(RNA-seq)分析,阐释CO2浓度升高、干旱及其交互条件对大豆基因表达影响,明确CO2浓度升高影响大豆耐旱性的调控途径,并在两个不同遗传背景品种中验证,从分子水平为未来气候变化背景下大豆抗旱育种提供理论参考。表型结果表明, CO2浓度升高促进了大豆的生长并缓解干旱胁迫的负面效应。叶片转录组测序分析共筛选到89个CO2响应基因, KEGG分类显示这些基因主要参与抗氧化物质(萜类、黄酮类等)代谢,同时特异性差异表达基因功能主要集中在细胞组分和生长发育方面。干旱条件下筛选的1006个差异表达(16倍)基因主要参与各类氨基酸(脯氨酸、色氨酸等)代谢途径,绝大多数蛋白质合成与转运相关基因上调,表明干旱胁迫下大豆叶片内物质合成交换过程加强。交互条件下筛选出的8566个差异表达基因主要参与碳水化合物代谢,光合作用-天线蛋白途径的相关基因几乎...  相似文献   

16.
Peach (Prunus persica) fruit have a short shelf-life, and the most common method employed to delay ripening and increase their postharvest life is cold storage. However, after extended storage at low temperature some cultivars have alterated ripening processes, resulting in a lack of juice and a woolly texture. To improve our understanding of the molecular mechanisms involved in the responses of peach fruit to cold storage we determined gene expression changes of fruit (cv. O’Henry) under different postharvest conditions: ripening (5 days at 21 °C), cold storage (21 days at 4 °C) and induction of woolliness (21 days at 4 °C followed by 5 days at 21 °C).Cluster analyses of genes differentially expressed between treatments revealed unique patterns associated with biological processes that operate during postharvest treatments. Genes up-regulated during postharvest ripening and woolliness include components of ethylene, and aroma biosynthesis as well as oxidative stress response. During cold storage treatment and woolliness, several genes linked to the oxidative stress response increased in abundance, suggesting changes in redox status. Quantitative RT-PCR analysis showed a sequential increase levels of mRNAs encoding key components of cellular stress response. Moreover, after 21 days of cold storage, expression of genes encoding oxidoreductase, catalase, superoxide dismutase and gluthatione reductase was still significantly higher than before cold treatment, suggesting that fruit cells were able to respond to the increased production of ROS that was induced by extended cold storage. In the woolly fruit, up-regulation of stress response genes was accompanied by down-regulation of key components of metabolic pathways that are active during peach ripening. The altered expression pattern of these genes might account for the abnormal ripening of woolly fruit.  相似文献   

17.
浆果的营养物质和功能性成分丰富,但由于其水分含量较高,采后易腐败变质,极大地缩短了浆果的货架期,因此延长采后浆果的保鲜时间尤为重要。概述了多糖类涂膜、蛋白类涂膜、多糖-蛋白复合涂膜这3类天然可食性涂膜的优缺点以及在采后浆果保鲜中的应用,并对其保鲜效果进行了分析,以期为采后浆果保鲜技术的应用和发展提供技术借鉴。  相似文献   

18.
We conducted a proteomic comparison between thermo‐sensitive genic male sterility (TGMS) SP2S and its near‐isogenic line SP2F grown at 22°C. The proteomes at microsporocyte meiosis and uninucleate microspore stages were profiled using 2‐dimensional gel electrophoresis. Twenty‐five well‐reproducible spots (10 spots at microsporocyte meiosis stage and 15 spots at uninucleate microspore stage) containing 28 proteins were successfully identified by MALDI‐TOF/TOF mass spectrometry. An elongation factor EF‐2 at microsporocyte stage and 4 proteins (aconitate hydratase, triosephosphate isomerase, serine/arginine‐rich mRNA splicing factor and glutathione S‐transferase) at uninucleate microspore stage accumulated in SP2S, but more proteins were lost or reduced, including those associated with amino acid metabolism, photosynthesis, synthesis and degradation of protein, lipid metabolism, cytoskeleton, RNA modification, oxidoreductase and defence response. The dramatic decrease of tubulin, actin and Translationally controlled tumour protein (TCTP) crucial for microtubule and cell division and three enzymes for amino acid metabolite at early stage indicated a serious defect on the cytokinesis. They were important clues for us to search the TGMS genes and its interacting genes.  相似文献   

19.
以耐低磷的小麦基因型洛夫林10号为材料, 采用蛋白质双向电泳技术, 结合质谱鉴定, 分析了正常磷供应和无磷处理7天后根系中的蛋白质组表达谱差异, 以期为深入探讨小麦响应磷胁迫的分子机理提供蛋白水平上的数据和资料。研究发现, 在可重复检测到的1 144个蛋白点中, 有87个在磷胁迫处理前后发生了明显的表达改变,占总数的7.6%,包括磷胁迫前特异表达、磷胁迫后特异表达、磷胁迫后上调和磷胁迫后下调表达等4种差异表达模式。在87个差异蛋白点中,有39个通过质谱技术被成功鉴定,涉及到代谢、细胞生长和分裂、转录和翻译、抗病、信号转导、转座元件及未知功能蛋白等功能类别,说明小麦可能通过细胞的代谢状态和基因表达改变来适应磷胁迫,进而维持体内磷含量的平衡状态。最后,我们还对差异表达点与磷胁迫的关系进行了分析和讨论。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号