首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
该研究旨在探究豆粕、棉粕、菜粕、酒糟蛋白(Distillers Dried Grains with Solubles,DDGS)、乙醇梭菌蛋白5种蛋白原料及其混合粉料的营养指标和理化性质的差异,确定影响颗粒饲料质量和制粒能耗的关键指标,对5种蛋白原料的制粒效果进行综合评价。以豆粕为对照组,仅改变蛋白原料,采用相同的加工参数制备颗粒饲料,比较不同蛋白原料的制粒效果,进行主成分分析及偏最小二乘回归分析(Partial Least Squares Regression,PLS)。结果表明:在原料营养指标和理化特性方面,乙醇梭菌蛋白具有高蛋白含量、高蛋白溶解度、低脂肪、低纤维的特点,棉粕具有高纤维的特点,菜粕具有高纤维和低蛋白溶解度的特点,DDGS具有低蛋白和高脂肪的特点。蛋白原料吸水性强弱排列顺序为乙醇梭菌蛋白、豆粕、棉粕、菜粕、DDGS,水溶性与之相反。乙醇梭菌蛋白组和棉粕组的制粒能耗较高,豆粕组的制粒能耗最低;棉粕组和乙醇梭菌蛋白组的修正耐久性(Modified Pellet Durability Index,MPDI)较高分别为92.72%和90.57%,菜粕组的MPDI最低为79.68%;乙醇梭菌蛋白组的硬度最高为130.95N,DDGS组的硬度最低为74.26N;乙醇梭菌蛋白组的糊化度最高为45.56%,DDGS组的糊化度最低为31.36%。通过偏最小二乘回归模型得到,蛋白含量、蛋白溶解度和吸水性的增加会提高颗粒饲料硬度、PDI和MPDI;粗纤维含量、蛋白溶解度和吸水性的增加会增加制粒能耗。综合分析5种蛋白原料制粒特性,由高到低排序为乙醇梭菌蛋白、棉粕、豆粕、菜粕、DDGS。研究结果为实际生产颗粒饲料时蛋白原料的选择提供参考依据。  相似文献   

2.
A process was developed to separate fiber from distillers dried grains with solubles (DDGS) in a dry‐grind corn process. Separation of fiber from DDGS would provide two valuable coproducts: 1) DDGS with reduced fiber, increased fat, and increased protein contents; and 2) fiber. The process, called elusieve process, used two separation methods, sieving and elutriation, to separate the fiber. Material carried by air to the top of the elutriation column was called the lighter fraction and material that settled to the bottom of the column was called the heavier fraction. We evaluated the compositions of fractions produced from sieving and elutriation. Two commercial samples of DDGS were obtained from two dry‐grind corn plants. Sieving over four screens (869, 582, 447, and 234 μm openings) created five size categories. The two smallest size categories contained >40% (w/w) of the original DDGS and had reduced fiber and increased protein and fat contents relative to the original DDGS. Elutriation of the remaining three size categories increased protein and fat contents and reduced fiber contents in the heavier fractions. Elutriation at air velocities of 1.59–5.24 m/sec increased the protein content of the heavier fraction by 13–41% and increased the fat content of the heavier fraction by 4–127% compared with the bulk fractions of each size category. This process was effective in separating fiber from both DDGS samples evaluated. Elusieve process does not require changes in the existing dry‐grind process and can be implemented at the end of the dry‐grind process.  相似文献   

3.
This study was conducted to investigate the production of balanced diets for juvenile yellow perch (Perca flavescens) feeds. Six isocaloric (≈3.21 kcal/g), isonitrogenous (30.1 ± 0.4% db) ingredient blends were formulated with 0, 10, 20, 30, 40, and 50% distillers dried grains with solubles (DDGS), and appropriate amounts of soybean meal, fish meal, vitamins, and minerals. Extrusion cooking was performed using a laboratory‐scale single‐screw extruder at a constant barrel temperature profile of 40–90–100°C, and a constant screw speed of 230 rpm (24.1 rad/sec). The mass flow rate was determined during processing; it generally increased with progressively higher DDGS content. Additionally, moisture content, water activity, unit density, expansion ratio, compressive strength, compressive modulus, pellet durability index, water stability, and color were extensively analyzed to quantify the effects of DDGS content on the physical properties of the resulting extrudates. Significant differences (P < 0.05) between blends were observed for color and water activity for both the raw material and extrudates, respectively, and for the unit density of the extrudates. There were significant changes in brightness (L), redness (a), and yellowness (b) among the final products when increasing the DDGS content of the blends. Expansion ratio and compressive strength of the extrudates were low. On the other hand, all blends showed high pellet durability (PDI ≥ 96.18%). Overall, it was ascertained that DDGS could be successfully included at rates of <50%, and that each of the ingredient blends resulted in viable, high quality extrudates.  相似文献   

4.
Corn kernels contain 9% fiber by weight, which is not digested well by nonruminants such as chicken and swine. Also, fiber is nonreactive in the dry‐grind process for ethanol production and is considered as feedstock for the production of second‐generation bioethanol. Fiber separation can enhance starch concentration in animal feed and increase starch loading in ethanol plants. Electrostatic separation is used to separate particles from granular mixtures under the influence of electrical forces. The Elusieve process, a combination of sieving and air classification, separates fiber by taking advantage of differences in size, shape, and density. Differences in dielectric properties could also be exploited for fiber separation. The aim of this study was to evaluate the effectiveness of electrostatic separation of fiber particles from corn. When the electrostatic method was used in conjunction with Elusieve processing, the fiber product had higher neutral detergent fiber (NDF, 52.9%) compared with Elusieve processing alone (NDF of 40.5%). Also, a higher quantity of enhanced flour (95.0% yield) was produced when the electrostatic method was used in conjunction with Elusieve processing compared with Elusieve processing alone (93.0% yield), without any change in quality of the enhanced flour (NDF of 6.6% in both cases). The electrostatic method improved fiber separation when used in conjunction with Elusieve processing.  相似文献   

5.
Separation of fiber from distillers dried grains with solubles (DDGS) provides two valuable coproducts: 1) enhanced DDGS with reduced fiber, increased fat and increased protein contents and 2) fiber. Recently, the elusieve process, a combination of sieving and elutriation was found to be effective in separating fiber from two commercial samples of DDGS (DDGS‐1 and DDGS‐2). Separation of fiber decreased the quantity of DDGS, but increased the value of DDGS by increasing protein content and produced a new coproduct with higher fiber content. Economic analysis was conducted to determine the payback period, net present value (NPV), and internal rate of return (IRR) of the elusieve process. The dependence of animal foodstuff prices on their protein content was determined. Equipment prices were obtained from industrial manufacturers. Relative to crude protein content of original DDGS, crude protein content of enhanced DDGS was higher by 8.0% for DDGS‐1 and by 6.3% for DDGS‐2. For a dry‐grind plant processing corn at the rate of 2,030 metric tonnes/day (80,000 bushels/day), increase in revenue due to the elusieve process would be $0.4 to 0.7M/year. Total capital investment for the elusieve process would be $1.4M and operating cost would be $0.1M/year. Payback period was estimated to be 2.5–4.6 years, NPV was $1.2–3.4M, and IRR was 20.5–39.5%.  相似文献   

6.
In the dry-grind process, corn starch is converted into sugars that are fermented into ethanol. The remaining corn components (protein, fiber, fat, and ash) form a coproduct, distillers dried grains with solubles (DDGS). In a previous study, the combination of sieving and elutriation (air classification), known as the elusieve process, was effective in separating fiber from DDGS. In this study, elusieve fiber was evaluated for ethanol production and results were compared with those reported in other studies for fiber from different corn processing techniques. Fiber samples were pretreated using acid hydrolysis followed by enzymatic treatment. The hydrolyzate was fermented using Escherichia coli FBR5 strain. Efficiency of ethanol production from elusieve fiber was 89–91%, similar to that for pericarp fiber from wet-milling and quick fiber processes (86–90%). Ethanol yields from elusieve fiber were 0.23–0.25 L/kg (0.027–0.030 gal/lb); similar to ethanol yields from wet-milling pericarp fiber and quick fiber. Fermentations were completed within 50 hr. Elusieve fiber conversion could result in 1.2–2.7% increase in ethanol production from dry-grind plants. It could be economically feasible to use elusieve fiber along with other feedstock in a plant producing ethanol from cellulosic feedstocks. Due to the small scale of operation and the stage of technology development for cellulosic conversion to ethanol, implementation of elusieve fiber conversion to ethanol within a dry-grind plant may not be currently economically feasible.  相似文献   

7.
Increasing demand for seafood products and rising demand for fish meal for commercial fish feeds is driving the search for effective alternative protein sources. Twin‐screw extrusion trials were conducted to study the production of nutritionally balanced feeds for rainbow trout fingerlings (Oncorhynchus mykiss). Six isocaloric (≈4.61 kcal/g) ingredient blends with a target protein content of >45% db were formulated with 0, 10, 20, 30, 40, and 50% distillers dried grains with solubles (DDGS) and other feed ingredients. The moisture contents of the diets were initially adjusted to 5–7% db, and then extruded at 250 rpm using dual 1.9 mm dies with varying amounts of steam (7.2–7.7 kg/hr) injected into the conditioner and water (4.3–6.5 kg/hr) into the extruder. Mass flow rates, moisture contents, and temperatures were measured during processing and moisture content, water activity, unit density, bulk density, expansion ratio, compressive strength, compressive modulus, pellet durability index, water stability, and color were analyzed to quantify the effects of varying DDGS content on the extrudate physical properties. Significant differences (P < 0.05) among the blends were observed for color and bulk density for both the raw and extruded materials, respectively, and for the unit density and pellet durability index of the extruded products. There were also significant changes in redness and yellowness, but only minor changes in brightness, among the final products with increasing DDGS content. The compressive strength of the extrudates increased significantly with increasing DDGS. Expansion ratio of all pellets was low. All extruded diets achieved very good water stability.  相似文献   

8.
Three different modified dry‐grind corn processes, quick germ (QG), quick germ and quick fiber (QGQF), and enzymatic milling (E‐Mill) were compared with the conventional dry‐grind corn process for fermentation characteristics and distillers dried grains with solubles (DDGS) composition. Significant effects were observed on fermentation characteristics and DDGS composition with these modified dry‐grind processes. The QG, QGQF, and E‐Mill processes increased ethanol concentration by 8–27% relative to the conventional dry‐grind process. These process modifications reduced the fiber content of DDGS from 11 to 2% and increased the protein content of DDGS from 28 to 58%.  相似文献   

9.
Three isocaloric (3.5 kcal/g) ingredient blends containing 20, 30, and 40% (wb) distillers dried grains with solubles (DDGS) along with soy flour, corn flour, fish meal, and mineral and vitamin mix, with net protein adjusted to 28% (wb) for all blends, were extruded in a single‐screw laboratory‐scale extruder at screw speeds of 100, 130, and 160 rpm, and 15, 20, and 25% (wb) moisture content. Increasing DDGS content from 20 to 40% resulted in a 37.1, 3.1, and 8.4% decrease in extrudate durability, specific gravity, and porosity, respectively, but a 7.5% increase in bulk density. Increasing screw speed from 100 to 160 rpm resulted in a 20.3 and 8.8% increase in durability and porosity, respectively, but a 12.9% decrease in bulk density. On the other hand, increasing the moisture content from 15 to 25% (wb) resulted in a 28.2% increase in durability, but an 8.3 and 8.5% decrease in specific gravity and porosity, respectively. Furthermore, increasing the screw speed and moisture content of the blends, respectively, resulted in an increase of 29.9 and 16.6% in extruder throughput. The extrudates containing 40% DDGS had 8.7% lower brightness, as well as 20.9 and 16.9% higher redness and yellowness, compared with the extrudates containing only 20% DDGS. Increasing the DDGS content from 20 to 40% resulted in a 52.9 and 51.4% increase in fiber and fat content, respectively, and a 7.2% decrease in nitrogen free extract. As demonstrated in this study, ingredient moisture content and screw speed are critical considerations when producing extrudates with ingredient blends containing DDGS, as they are with any other ingredients.  相似文献   

10.
Carotenoid-enriched distillers dried grain with solubles (DDGS) developed as a value-added animal feed to provide carotenoids from mono and mixed culture (Mx) fermentation of red yeasts Phaffia rhodozyma (PR) and Sporobolomyces roseus (SR) were evaluated for their nutritional composition and compared to the control (C) DDGS. Apart from providing carotenoids, all three fermentation treatments reduced fiber with best reduction of 77% in PR, enhanced crude fat with highest of 81% in Mx, and reduced protein, amino acids and nitrogen by 50% in PR. DDGS fiber reduction by 77% was achieved by P. rhodozyma in the absence of any pretreatment. Qualitative and quantitative differences in fatty acid profiles were seen among the treatments. Vaccenic acid, a monounsaturated fatty acid produced in SR and Mx fermentation, was absent in C and PR. All these nutritional modifications are highly desirable in different DDGS-based animal feeds and can be explored to obtain tailor-made feeds/feed blends for specific animal diets.  相似文献   

11.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

12.
With the U.S. fuel ethanol industry projected to grow during the next several years, supplies of distillers dried grains with solubles (DDGS) are anticipated to continue to grow as well. DDGS is used primarily as livestock feed. Much of the DDGS must be shipped, often over large distances, outside the Corn Belt (which is where most of the corn‐based ethanol plants are currently located). Stickiness and caking among particles is a common issue for DDGS, and it often leads to flowability problems. To address this, the objective of this study was to understand the cross‐sectional and surface natures of DDGS particles from five ethanol plants, and how they interact with DDGS properties. This study examined the distribution patterns of chemical components within cross‐sections, within section edges (i.e., surface layers), and on surfaces using standard staining techniques; chemical composition was determined using standard protocols; and physical and flowability properties were also determined. Crude protein in the samples was 28.33–30.65% db, crude fat was 9.40–10.98% db, and neutral detergent fiber (NDF) was 31.84–39.90% db. Moisture contents were 4.61–8.08% db, and geometric mean diameters were 0.37–0.52 mm. Cross‐sectional staining showed protein levels of 19.57–40.39%, and carbohydrate levels of 22.17–43.06%, depending on the particle size examined and the production plant from which the DDGS was sampled. Staining of DDGS particles indicated a higher amount of surface layer protein compared with carbohydrate thickness in DDGS particles that had a lower flow function index (which indicated potential flow issues). Additionally, surface fat staining suggested that higher surface fat also occurred in samples with worse flow problems. This study represents another step toward understanding why DDGS particles stick together during storage and transport, and will hopefully help to improve DDGS material handling strategies.  相似文献   

13.
The rapidly expanding U.S. ethanol industry is generating a growing supply of co-products, mostly in the form of dried distillers' grain and solubles (DDGS) or wet distillers' grains (WDG). In the United States, 90% of the co-products of maize-based ethanol are fed to livestock. An unintended consequence is that animals are likely to be fed higher levels of mycotoxins, which are concentrated up to three times in DDGS compared to grain. The model developed in this study estimates current losses to the swine industry from weight gain reduction due to fumonisins in added DDGS at $9 million ($2-18 million) annually. If there is complete market penetration of DDGS in swine feed with 20% DDGS inclusion in swine feed and fumonisins are not controlled, losses may increase to $147 million ($29-293 million) annually. These values represent only those losses attributable to one mycotoxin on one adverse outcome on one species. The total loss due to mycotoxins in DDGS could be significantly higher due to additive or multiplicative effects of multiple mycotoxins on animal health. If mycotoxin surveillance is implemented by ethanol producers, losses are shifted among multiple stakeholders. Solutions to this problem include methods to reduce mycotoxin contamination in both pre- and postharvest maize.  相似文献   

14.
In the dry‐grind process, starch in ground corn (flour) is converted to ethanol, and the remaining corn components (protein, fat, fiber, and ash) form a coproduct called distillers dried grains with solubles (DDGS). Fiber separation from corn flour would produce fiber as an additional coproduct that could be used as combustion fuel, cattle feed, and as feedstock for producing valuable products such as “cellulosic” ethanol, corn fiber gum, oligosaccharides, phytosterols, and polyols. Fiber is not fermented in the dry‐grind corn process. Its separation before fermentation would increase ethanol productivity in the fermenter. Recently, we showed that the elusieve process, a combination of sieving and elutriation (air flow), was effective in fiber separation from DDGS. In this study, we evaluated the elusieve process for separating pericarp fiber from corn flour. Corn flour remaining after fiber separation was termed “enhanced corn flour”. Of the total weight of corn flour, 3.8% was obtained as fiber and 96.2% was obtained as enhanced corn flour. Neutral detergent fiber (NDF) of corn flour, fiber, and enhanced corn flour (dry basis) were 9.0, 61.5, and 5.7%, respectively. Starch content of corn flour, fiber, and enhanced corn flour (dry basis) were 68.8, 23.5, and 71.3%, respectively. Final ethanol concentration from enhanced corn flour (14.12% v/v) was marginally higher than corn flour (13.72% v/v). No difference in ethanol yields from corn flour and enhanced corn flour was observed. The combination of sieving and air classification can be used to separate pericarp fiber from corn flour. The economics of fiber separation from corn flour using the elusieve process would be governed by the production of valuable products from fiber and the revenues generated from the valuable products.  相似文献   

15.
Effects of phytase addition, germ, and pericarp fiber recovery were evaluated for the E‐Mill dry grind corn process. In the E‐Mill process, corn was soaked in water followed by incubation with starch hydrolyzing enzymes. For each phytase treatment, an additional phytase incubation step was performed before incubation with starch hydrolyzing enzymes. Germ and pericarp fiber were recovered after incubation with starch hydrolyzing enzymes. Preliminary studies on phytase addition resulted in germ with higher oil (40.9%), protein (20.0%), and lower residual starch (12.2%) contents compared to oil (39.1%), protein (19.2%), and starch (18.1%) in germ from the E‐Mill process without phytase addition. Phytase treatment resulted in lower residual starch contents in pericarp fiber (19.9%) compared to pericarp fiber without phytase addition (27.4%). Results obtained led to further investigation of effects of phytase on final ethanol concentrations, germ, pericarp fiber, and DDGS recovery. Final ethanol concentrations were higher in E‐Mill processing with phytase addition (17.4% v/v) than without addition of phytase (16.6% v/v). Incubation with phytases resulted in germ with 4.3% higher oil and 2.5% lower residual starch content compared to control process. Phytase treatment also resulted in lower residual starch and higher protein contents (6.58 and 36.5%, respectively) in DDGS compared to DDGS without phytase incubations (8.14 and 34.2%, respectively). Phytase incubation in E‐Mill processing may assist in increasing coproduct values as well as lead to increased ethanol concentrations.  相似文献   

16.
Formulation is said to be the single most important variable affecting the physical quality of pelleted feeds. Previous investigations have usually focused on the influence of a single ingredient at one time and few have attempted to devise predictive models for pellet quality based on the composition of the rations. A study was conducted to investigate the functional properties of the compositional fractions of corn (starch, protein, fiber, fat) as related to the quality of pellets produced. Overall, a quadratic effect was observed for starch, with a positive response at lower‐ to midrange of inclusion, then assuming a downward curvature as the starch levels approached the higher end of the experimental region. Corn protein and especially fat appeared to have a negative influence on pellet quality. Empirical models were created that partially enabled the prediction of the response when ground yellow dent corn was substituted in the model systems. However, overestimation of the negative effects of fat in some of the models led to lower predicted values compared with actual observations.  相似文献   

17.
Glyphosate-tolerant (Roundup Ready) corn line GA21 has been developed by genetic modification to tolerate glyphosate, the active ingredient in Roundup herbicide. The purpose of this study was to evaluate the compositional and nutritional safety of corn line GA21 compared to that of conventional corn. Compositional analyses were conducted to measure proximate, fiber, amino acid, fatty acid, and mineral contents of grain and proximate, fiber, and mineral contents of forage collected from 16 field sites over two growing seasons. The nutritional safety of corn line GA21 was evaluated in a poultry feeding study conducted with 2-day old, rapidly growing broiler chickens, at a dietary concentration of 50-60% w/w. Compositional analysis results showed that, except for a few minor differences that are unlikely to be of biological significance, the grain and forage of GA21 corn were comparable in their composition to that of the control corn line and to conventional corn. Results from the poultry feeding study showed that there were no differences in growth, feed efficiency, adjusted feed efficiency, and fat pad weights between chickens fed with GA21 grain or with parental control grain. These data taken together demonstrate that Roundup Ready corn is as safe and nutritious as conventional corn for food and feed use.  相似文献   

18.
The use of a renewable biomass that contains considerable amounts of starch and cellulose could provide a sugar platform for the production of numerous bioproducts. Pretreatment technologies have been developed to increase the bioconversion rate for both starch and cellulosic‐based biomass. This study investigated the effect of decortication as a pretreatment method on ethanol production from sorghum, as well as investigating its impact on quality of distillers' dry grains with solubles (DDGS). Eight sorghum hybrids with 0, 10, and 20% of their outer layers removed were used as raw materials for ethanol production. The decorticated samples were fermented to ethanol using Saccharomyces cerevisiae. Removal of germ and fiber before fermentation allowed for greater starch loading for ethanol fermentation and resulted in increased ethanol production. Ethanol yields increased as the percentage of decortication increased. The decortication process resulted in DDGS with higher protein content and lower fiber content, which may improve the feed quality.  相似文献   

19.
In the dry‐grind ethanol process, distillers dried grains with solubles (DDGS) is the main coproduct, which is primarily used as an ingredient in ruminant animal diets. Increasing the value of DDGS will improve the profitability of the dry‐grind ethanol process. One way to increase DDGS value is to use pigmented maize as the feedstock for ethanol production. Pigmented maize is rich in anthocyanin content, and the anthocyanin imparts red, blue, and purple color to the grain. It is reported that anthocyanin would be absorbed by yeast cell walls during the fermentation process. The effects of anthocyanin on fermentation characteristics in the dry‐grind process are not known. In this study, the effects of anthocyanin in conventional (conventional starch hydrolyzing enzymes) and modified (granular starch hydrolyzing enzymes [GSHE]) dry‐grind processes were evaluated. The modified process using GSHE replaced high‐temperature liquefaction. The ethanol conversion efficiencies of pigmented maize were comparable to that of yellow dent corn in both conventional (78.4 ± 0.5% for blue maize, 74.3 ± 0.4% for red maize, 81.2 ± 1.0% for purple maize, and 75.1 ± 0.2% for yellow dent corn) and modified dry‐grind processes using GSHE (83.8 ± 0.8% for blue maize, 81.1 ± 0.3% for red maize, 93.5 ± 0.8% for purple maize, and 85.6 ± 0.1% for yellow dent corn). Total anthocyanin content in DDGS from the modified process was 1.4, 1.9, and 2.4 times of that from the conventional process for purple, red, and blue maize samples, respectively. These results indicated that pigmented maize rich in anthocyanin did not negatively affect the fermentation characteristics of the dry‐grind process and that there was a potential to use pigmented maize in the dry‐grind process, especially when using GSHE.  相似文献   

20.
Two agro-industrial coproducts, soybean cotyledon fiber and distiller's dried grains with solubles (DDGS), were used as substrates to evaluate the effect of coculturing three different fungi, Aspergillus oryzae , Trichoderma reesei , and Phanerochaete chrysosporium , on enzyme production by solid-state fermentation (SSF). When soybean fiber was used as the substrate, a maximum xylanase activity of 757.4 IU/g and a cellulase activity of 3.2 IU/g were achieved with the inoculation and incubation of T. reesei and P. chrysosporium for 36 h, followed by A. oryzae for an additional 108 h. This inoculation scheme also resulted in the highest xylanase activity of 399.2 IU/g compared to other fungi combinations in the SSF of DDGS. A large-scale SSF by this fungus combination produced fermented products that had xylanase and cellulase activities of 35.9-57.0 and 0.4-1.2 IU/g, respectively. These products also had 3.5-15.1% lower fiber and 1.3-4.2% higher protein contents, suggesting a potential feed quality improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号