首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 18‐week study was conducted in 12, 0.1 ha ponds to evaluate the impacts of cyclic feeding regimes on hybrid striped bass (HSB) foodfish production and pond water quality. Approximately 840 HSB [mean weight (std.); 91.08 g (8.18)] were stocked into each pond (8400 fish ha?1; 3360 fish acre?1) and fed according to one of three feeding regimes. The three feeding regimes included a control (fed twice daily to apparent satiation), and cycles of 3 weeks feed deprivation followed by 3 or 6 weeks of feeding to apparent satiation (3/3 and 3/6 respectively). Compensatory growth (CG) was observed in both cyclic feeding treatments; however, the response was insufficient for the fish to completely regain lost weight. Final mean weight of control fish (477.9 g) exceeded (P<0.05) that of fish receiving the two cyclic treatments: 3/6 (404.7 g) and 3/3 (353.8 g). Specific growth rate (SGR) of fish in the 3/3 treatment increased during all three refeeding periods, and was significantly greater than controls during weeks 9–12 and weeks 15–18, which represent the refeeding phase of the second and third feeding cycles. Specific growth rate for fish in the 3/6 treatment was significantly higher than controls only during the first 3 weeks of the first feeding cycle. Hepatosomatic index and condition factor were highly responsive measures that closely followed the metabolic state of fish on the feeding cycle. Of the water quality variables measured, total phosphorus was 32% lower in ponds receiving cyclic feeding versus control ponds. Soluble reactive phosphorus was 41% and 24% lower in ponds offered the 3/3 and 3/6 cyclic feeding treatments, respectively, although, significant differences (P<0.10) were only observed between control and 3/3 treatment ponds. Overall, CG was observed in HSB foodfish grown in ponds, although 3 weeks of feed deprivation was excessive and did not allow for complete growth compensation. Weight loss during feed deprivation was influenced by pond water temperatures. Early season feed deprivation did not cause as much weight loss as during the second cycle later in the season. Further studies on shorter deprivation periods applied during moderate to low water temperatures are needed to identify feeding regimes that minimize weight loss and result in a complete CG response.  相似文献   

2.
Ten‐week study was performed on Labeo rohita fingerlings (av. wt. 3.75 ± 0.06 g) to investigate the nature of compensatory growth. Fingerlings were deprived of food for 0 (control), 1 (D1), 2 (D2) or 3 (D3) weeks and refed to satiation for 5 weeks. The feed deprivation was carried out in D3 group on week 3, 4 and 5; D2 group on week 4 and 5; D1 group on week 5, and refeeding of all the groups were started from week 6 onwards. The D1 and D2 groups caught up in body weight with that of control fish within 2 weeks and 4 weeks of refeeding, respectively, but the D3 group had significantly (P < 0.05) lower body weight than the control after 5 weeks of refeeding. Higher growth efficiency was observed in all the feed deprived groups in the 1st week of refeeding only. Feed intake in D1 group became similar with the control after 5 weeks of refeeding, but the D2 and D3 groups were still hyperphagic when the experiment terminated. Thus, compensatory growth was due to hyperphagia and improved growth efficiency. In conclusion, complete compensatory growth was observed in L. rohita fingerlings after feed deprivation of 1 and 2 weeks.  相似文献   

3.
An 8‐week feeding trial was conducted to evaluate compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii (initial weight 9.56 ± 0.12 g) in fifteen 300 L indoors flow‐through circular fibreglass tanks. Feeding regimes was designed as follows: the control group (fed continuously), and S1, S2, S3 and S4 groups experienced 1, 2, 3 and 4 days of feed deprivation and then refeeding for the remaining days per week respectively. Changes in body weight, specific growth rate (SGR), feed intake (FI) and feed efficiency ratio (FER) were examined biweekly during the trial. At the end of the cyclical feeding periods, survival was not significantly affected by feeding strategy (> 0.05). Final body weight of fish in S1 group was significantly higher than the control group (< 0.05) after an 8 weeks trial, and fish in the S2 group reached the same body weight of the control fish (> 0.05), however, the growth data in the S3 and S4 groups could not catch‐up with the control treatment (< 0.05). In the first 4 weeks, SGR values of fish with feed deprivation more than 2 days per week were inferior to those of control group (< 0.05); however, no significant differences of SGR were observed among the groups for the last 4 weeks (> 0.05). FI increased significantly with the starvation days increasing during the whole feeding trial (< 0.05). At the periods 2, 4 and 6 weeks, FER values increased significantly with increasing feed‐deprivation days up to S2 group and then levelled off (< 0.05); however, FER in S2 group was only higher than that in S0 and S1, but no significant differences were found among the other treatments at the end of week 8. Significant differences were found in apparent digestibility coefficients (ADCs) of dry matter and crude protein among the treatments, while ADCs of crude lipid were unaffected. Protein and lipid contents in whole body and dorsal muscle showed declining tendency with increasing food deprivation days, while moisture contents tended to increase (< 0.05). Serum parameters were markedly affected by feeding regimes except for total protein concentration and thyroxine level. The present results indicated that starvation for 1 and 2 days per week of juvenile black sea bream could achieve over‐compensation and complete compensation respectively. However, in case of longer term feed restriction regime, fish failed to obtain good growth performance.  相似文献   

4.
A 6-week feeding trial was conducted to investigate the effects of short-term feed deprivation on inducing compensatory growth and changes in thyroid hormone levels of channel catfish. Feeding treatments consisted of the following four regimes of 2-week duration: satiate feeding (control), no feed for 3 days then feeding to apparent satiation for the next 11 days, no feed for 5 days then feeding to apparent satiation for 9 days, and no feed for 7 days then feeding to apparent satiation for 7 days. These regimes were repeated three times over the 6-week trial in which 25 channel catfish fingerlings, initially averaging 15 g each, were stocked into each of 12, 38-l glass aquaria supplied with supplemental aeration and flow-through water. Depriving fish of feed had a pronounced effect in that fish lost weight in as little as 3 days. Returning the fish to a satiate feeding regime caused a resumption of growth, equal to control growth only in the case of the 3-day deprived treatment, but all periods of feed deprivation failed to induce a period of catch-up growth adequate to compensate for previously lost weight. Feed efficiency also was not improved by the periods of feed deprivation, and restricting feed in excess of 3 days lowered feed efficiency. Fish condition indices were not altered at the termination of the trial. Muscle lipid, muscle protein and liver protein also were not different among feeding regimes. Liver lipid was elevated in fish deprived of feed for more than 3 days every 2 weeks. Plasma thyroxine (T4) and triiodothyronine (T3) were equally depressed by 3 days from the onset of feed deprivation. Both hormones rose significantly within 24 h of realimentation, with the greatest increase observed in animals subjected to the briefest feed deprivation. These results support a role for thyroid hormones in the promotion of growth in channel catfish. Whereas feed deprivation appears to rapidly reduce activity of the hypothalamo-pituitary-thyroid axis, the high correlation observed between T4 and T3 in all treatments suggests that peripheral deiodinating systems are capable of rapidly generating T3 from T4 upon realimentation. More rapid recovery of thyroid hormone production following realimentation may minimize the effects of feed deprivation on growth and feed efficiency of fish subjected to the 3-day deprivation treatment when compared to longer periods.  相似文献   

5.
The objective of this study was to determine the effect of total replacement of fish meal by cottonseed meal (CSM) supplemented with various levels of iron in practical diets on growth performance, feed utilization, body composition and some biological and haematological parameters of Nile tilapia, Oreochromis niloticus (L.). Juvenile fish (average weight 3.78±0.1 g) were stocked in 18 glass aquariums (80 L each) at 25 fish per aquarium. Fish meal (50% of the diet) was used as the sole source of animal protein in the control diet 1. Diets 2–6 had 100% CSM (0.145% free gossypol) protein with various levels of supplemented iron (86, 486, 972, 1458 and 1944 mg Fe kg diet?1) in diets 2–6 respectively. Diets were fed to fish twice daily at a rate of 3% of body weight during the first 12 weeks then 2% of the total fish biomass daily until the end of the experiment (30 weeks). The results of this study revealed that, groups of fish fed diets 1, 4, 5 and 6 had significantly (P≤0.01) the higher average body weight and specific growth rate than those of fish fed diet 2 (100% CSM without iron supplementation) and diet 3 (100% CSM plus 486 mg Fe kg diet?1). The best values for feed conversion ratio, protein efficiency ratio and condition factor (K) were recorded with groups of fish fed diet 4 (100% CSM plus 972 mg Fe kg diet?1). Red blood cell count, haematocrit and haemoglobin were increased with increasing levels of iron and significantly affected by dietary iron. Hepatosomatic index for diets 3–6 were not significantly different (P>0.05) and superior to that of diet 1 control [100% fish meal (FM)]. The gonadosomatic index of males of Nile tilapia was not influenced by CSM diets with or without iron, while females of Nile tilapia were significantly influenced with iron and the lowest values were recorded with groups of fish fed diet 2 (100% CSM without iron supplementation). Apparent digestibility coefficients of protein, fat dry matter and energy were relatively high for most diets supplemented with iron and increased by increasing iron supplementation. There were no significant differences between groups of fish fed diet 1 (100% FM) and diets 5 and 6 which contained 100% CSM with additional 1458 and 1944 mg Fe kg diet supplemental iron?1 respectively. Proximate composition of whole body was not influenced by diet. Adding 972 mg Fe kg diet?1 from ferrous sulphate to the CSM‐based diets that contained 972 mg free gossypol (1:1 iron to free gossypol ratio) for Nile tilapia reduce the negative effects of gossypol and improved growth performance, feed utilization and blood parameters and can totally replace fish meal in tilapia diets.  相似文献   

6.
We evaluated growth performance and metabolic responses in Nile tilapia (Oreochromic niloticus) juveniles (30.2 ± 0.9 g) subjected to 1 (F1), 2 (F2), or 3 weeks (F3) of fasting and then refed for 10 weeks (10WR) compared to controls (FC), which were fed for the full 13-week trial. Weight gain and specific growth rate (SGR) during fasting were lower in all treatments compared to the FC. However, during refeeding, feed intake/body mass and SGR increased in F1, F2, and F3, inducing partial compensatory growth. The hepatosomatic index (HSI), visceral fat index (VFI), liver glycogen (LG), and carcass lipid levels dropped in all fasted fish compared to FC (P < 0.05), showing a depletion of stored nutrients such as fat and LG. Along with LG, fat reserves were mobilized during fasting to maintain basal metabolism and survival, but these energy constituents returned to control levels at 10WR, at which time HSI was higher in all refed fish compared to FC. Additionally, the variables VFI, LG, and lipid in carcass increased in all refed fish, equaling those of FC at 10WR. The results showed that, in contrast with other protocols that used smaller tilapia juveniles, the feeding strategies utilized for Nile tilapia juveniles in this study (1 to 3 weeks of fasting and 10WR) were able to induce only partial compensatory growth. It can be concluded that in situations that require complete food restriction in juvenile Nile tilapia (30 g), an acceptable strategy is to limit the period of fasting to 1 week or less to minimize losses and to achieve partial compensatory growth.  相似文献   

7.
不同循环饥饿投喂模式对尼罗罗非鱼补偿生长的影响   总被引:4,自引:1,他引:3  
李建  王琨  陈建春  叶继丹 《水产学报》2014,38(6):869-876
为了探讨尼罗罗非鱼对不同循环饥饿投喂模式的补偿生长效应,本实验分别采用每天投喂(S0)及饥饿1 d+投喂3 d(S1F3)、饥饿1 d+投喂5 d(S1F5)、饥饿1 d+投喂7 d(S1F7)、饥饿2 d+投喂3 d(S2F3)、饥饿2 d+投喂5 d(S2F5)和饥饿2 d+投喂7 d(S2F7)6种不同的循环投喂模式,用含33%蛋白质和8%脂肪的饲料饲养尼罗罗非鱼(均重13.50 g),饲喂期为43 d。结果显示,S0组的增重率(806.74%)最高,与S1F3、S1F5和S1F7组差异不显著,但分别比S2F3、S2F5和S2F7组显著提高40.3%、33.6%和10.4%;S0组的特定生长率最低(5.36%),显著低于其他各组;与对照组相比,采用循环投喂模式没有改善饲料转化率和蛋白质效率,但却能明显提高日摄食率;各实验处理组肝体比、脏体比、肥满度、鱼体灰分含量、肌肉RNA/DNA比值及血清总胆固醇、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇和尿素氮含量与对照组差异不显著;S1F3、S1F5和S1F7组鱼体蛋白质和脂肪含量、血清甘油三酯含量及血清谷丙转氨酶和谷草转氨酶活性与S0组差异不显著,但S2F3、S2F5和S2F7组鱼体蛋白质和脂肪含量及血清甘油三酯含量显著低于S0组,血清谷丙转氨酶和谷草转氨酶活性显著高于S0组。研究表明,尼罗罗非鱼在S1F3、S1F5和S1F7模式下获得了完全补偿生长,而在S2F3、S2F5和S2F7模式下仅获得了部分补偿生长,且均是通过提高恢复投喂期间的摄食量来实现补偿生长。在获得完全补偿生长的3组中,S1F3组的实际投喂天数最短,仅为33 d,比每天投喂模式缩短了23.3%,因此在本实验条件下,饥饿1 d+投喂3 d是最佳的循环饥饿投喂模式。  相似文献   

8.
A feeding trial evaluated the influences of different cycles of starvation and refeeding protocols for 7 weeks on growth and feed intake in 14‐g gilthead sea bream, Sparus aurata. Following 7 weeks of alternated cycles, all the groups were fed to apparent satiation for a further 3 weeks. Three groups of fish were fasted for 2, 4 or 7 days (S2, S4 and S7, respectively) and then refed until their relative feed intake differed by less than 20% of fed controls until the end of the week 7, while a fourth group (S7/Rf14) experienced three cycles, each consisting of 1 week of food deprivation followed by 2 weeks of satiation feeding. Control (C) fish were fed to satiation throughout the trial. The fish were fed a sea bream diet (450 g kg?1 crude protein) according to the protocols, twice a day for 7 weeks. Growth performance and feed intake in continuously fed control group were significantly higher than those of the deprived groups (S2, S4, S7 and S7/Rf14) (P < 0.05). Weight gain highly correlated with total feed intake (R2 = 94), and feed efficiency was the highest in the control group than other deprived groups (P < 0.05). The juveniles of gilthead sea bream demonstrated only a partial compensation during the cycling period and even after being fed to satiation for another 3 weeks. The convergence of growth trajectories and subsequent hyperphagic responses of the groups fed according to protocols are discussed in terms of possible costs of compensatory growth.  相似文献   

9.
The changes in the specific growth rate (SGR), feed intake (FI), feed conversion efficiency (FCE), and digestive enzyme activities (protease, amylase, and lipase in the hepatopancreas) of Fenneropenaeus chinensis juveniles (0.753 ± 0.041 g, wet weight) exposed to different periods of food deprivation were investigated during the period of refeeding in a controlled laboratory experiment. The starvation-refeeding cycles consisted of the following seven regimes of 24-day duration: satiate feeding (control, SC); no feeding for 4 (S4), 8 (S8), 12 (S12), 16 (S16), 20 (S20), and 24 (S24) days; then feeding to apparent satiation for the next 20, 16, 12, 8, 4, and 0 days, respectively. The various starvation-refeeding cycles have significant influences on the growth of the test shrimps. The SGR of the shrimps exposed to S4 and S8 treatments exceeded the controls, and no significant differences in SGR (P > 0.05) were found between the SC and S12 or S16 treatments at the end of the refeeding. These changes may have resulted from the significant increase in FI and FCE. The protease activities of test shrimps exposed to different periods of food deprivation were significantly lower (P < 0.05) than those of shrimps under SC treatment at the end of food deprivation then showed a tendency to rapidly increase during refeeding. However, nearly the exact opposite occurred for amylase activities and lipase activities. Lipid and carbohydrate reserves in the hepatopancreas are preferentially mobilized with protein-sparing effect at the beginning of food deprivation. Proteins are the main nutritional store during the refeeding. The findings of the research will be beneficial in the design of feeding regimes and will improve our knowledge on some aspects of the nutrition physiology of F. chinensis related to their biology.  相似文献   

10.
The compensatory growth, productive performance, proximal composition and somatic indices of Nile tilapia (Oreochromis niloticus) cultivated in biofloc were evaluated during a 144‐day period under five cyclic regimes of feed restriction and feeding. Five treatment groups, in which the frequency of feed restriction (R) and feeding (F) varied by periods (days) as follows: R1:F3, R3:F9, R6:F18, R8:F24 and R12:F36; each treatment was evaluated in triplicate. The cycles were repeated throughout the culture period. The control group received feed daily. Fish were cultivated in 18 circular tanks (3 m3) at a density of 50 fish/m3 per tank. At the end of the study, the survival of Nile tilapia was greater than 90% in all the treatments. Complete compensation in growth was achieved in R6:F18 and R12:F36. At the end of the feed restriction period, both crude protein and total lipid content of the tilapia muscle tissue taken from fish of the treatment groups were similar to samples of muscle tissue derived from fish of the control group; however, a reduction of more than 40% in somatic indices compared with the control was observed, but these recovered by the end of the feeding phase. The results indicate that cyclic feeding based on 12 days of feed restriction and 36 days of feeding (R12:F36) induced a complete compensation in weight and restoration of energy reserves, with similar measures of productive performance observed when compared to the control treatment during the culture of Nile tilapia in biofloc, and food reduction did not affect proximal composition.  相似文献   

11.
The growth rate of farmed fish is an important factor regarding aquaculture success. An understanding of the cellular events that occur in skeletal muscle when fish undergo periods of fasting and refeeding provides information useful in developing alternative feeding strategies for improving muscle growth in commercially cultivated species. To evaluate the effect of 1–3 weeks of fasting and 10 weeks of refeeding in Nile tilapia juveniles, we analyzed the growth performance and changes in muscle cellularity and the expression of the following growth and muscle related genes: MyoD, myogenin, IGF-1, IGF-1 receptor, MuRF-1, atrogin-1 and myostatin. Reduced body mass was observed in all three groups of fasted fish during their time off feed, and 10 weeks of refeeding resulted in partial compensatory growth of body mass. No differences in the frequency of white muscle fiber diameters were observed between fasted and fed control fish treatments. However, changes in gene expression induced by fasting and refeeding were found. IGF-1 receptor, ubiquitin ligases MuRF1 and atrogin-1 expression increased during the 1–3 weeks of fasting, while IGF-1 levels dropped significantly (P < 0.001) compared to the control treatment. Furthermore, myogenin mRNA level in fish submitted to 3 weeks of fasting was higher in comparison to the control treatment (P < 0.05). Overall, our results showed that 1–3 weeks of fasting can induce muscle atrophy activation in Nile tilapia juveniles, and 10 weeks of refeeding is enough to induce only partial compensatory growth.  相似文献   

12.
ABSTRACT:   Compensatory growth, feeding rate, feed efficiency and chemical composition of juvenile black rockfish (mean weight 1.43 g) were investigated for 35 days after a 14-day feed deprivation treatment under four feeding conditions: one group continuously fed (control) and the other three groups fasted for 5 days (F5), 10 days (F10) and 14 days (F14). All fasted fish were re-fed from day 15. Only F5 achieved the same body weight as the control, indicating that complete compensation occurred in F5. The specific growth rate (SGR) of F5 was the highest at day 21 and then decreased thereafter, showing higher values than the control at days 21, 28 and 42. In contrast, although SGRs of F10 and F14 were higher than that of the control during the whole refeeding period except day 21, they did not catch up the control in body mass, indicating that only partial compensation occurred in F10 and F14. The feeding rate (FR) of all groups except F14 changed in a pattern similar to SGR (Spearman's rank correlation, r s > 0.9), suggesting that SGR varied depending on FR. Similar feeding efficiencies (FEs) were found in the four groups and they did not vary significantly during the whole refeeding period, suggesting that FE was not the factor affecting SGR. At day 14, the ratios of lipid to lean body mass in F10 and F14 were lower than those in the control and F5, and there was no difference between the control and F5. At day 49, however, only F14 showed a lower value than the other three groups, and there was no difference among the three groups. These results indicate that juvenile black rockfish fasted for 5–14 days can exhibit compensatory growth after refeeding, but timing and degree vary depending on the duration of feed deprivation.  相似文献   

13.
Five sources of dietary fatty acids (fish, linseed, sunflower, olive and coconut oils) were evaluated in juvenile Nile tilapia in two trials: at optimal (28°C) and suboptimal (22°C) temperatures lasting 9 and 12 weeks, respectively. At 28°C, there was no clear effect of dietary source on fish growth, but at 22°C, the highest daily weight gain occurred in fish fed sunflower, linseed and fish oil. Feed efficiency and apparent net protein utilization increased as the amount of unsaturated fatty acids, especially n‐3 polyunsaturated fatty acids (PUFA), in the diet increased. Coconut oil, which is rich in saturated fatty acids (SFA), led to the worst growth results, especially at 22°C, with the lowest weight gain, feed intake and feed utilization by tilapia. The body fatty acid profile, in % of total fatty acids, was dependent on diet composition. However, for all treatments, PUFA body content increased with the decrease in temperature, but SFA and monounsaturated fatty acids remained the primary contributors to the body profile. Either fish oil or vegetable oil may be used as sources of dietary fatty acids for Nile tilapia, but at suboptimal temperatures, a dietary source containing more PUFA and less SFA improves performance.  相似文献   

14.
Compensatory growth of red sea bream, Pagrus major, during feed deprivation and after refeeding was investigated. Groups of three fish each were allocated into 28 cages. Fish were fed by a commercial feed to satiation twice a day. Four feeding groups of fish were prepared: one group with continuous feeding (C) for 9 wk and three other groups with feed deprivation for 1 wk (F1) in Week 3, 2 wk (F2) from Week 2 to Week 3, and 3 wk (F3) from Week 1 to Week 3, respectively. All fish in the feed deprivation treatments resumed feeding in Week 4. The full compensatory growth was achieved in F1 and F2 fish after refeeding for the first 3 wk but in F3 fish after refeeding for the second 3 wk. Specific growth rate and feed conversion efficiency in all fish experiencing fasting were higher than those of control fish after first 3 wk of refeeding. At the end of feed deprivation in Week 3, crude protein, crude lipid, and energy content of all fish experiencing fasting were lower than those of the control fish. These results indicated that red sea bream experienced 1‐, 2‐, and 3‐wk fasting could achieve full compensatory growth in the 9‐wk feeding trial.  相似文献   

15.
The main objectives of this study was to evaluate the effect of partial and total replacement of fishmeal protein by okara meal (OM) protein in practical diets on growth performance, feed utilization and body composition of Nile tilapia (Oreochromis niloticus L.) mono‐sex males. Fish of an average initial weight of 2.67 ± 0.01 g were stocked in 15 glass aquariums (80 L each) at a rate of 15 fish per aquarium. Fishmeal protein (18% of the diet) was used as the sole source of animal protein in the control diet. Percent replacement of fish meal (FM) by OM on the basis of crude protein was as follows: 0% (control diet A), 25% (diet B), 50% (diet C), 75% (diet D) and 100% (diet E). Diets were fed to fish at a rate of 5%, and then gradually reduced to 4% of the total fish biomass daily, for a period of 12 weeks. The results revealed that the fish fed diets A (100% FM control), B (25% OM), C (50% OM) and D (75% OM) had significantly the best average body weight, weight gain g, specific growth rate (SGR % day?1), weight gain % and feed intake g fish?1 compared with diet E (100% OM) which had the lowest values. There were no significant differences (P > 0.05) among all experimental diets and control in terms of feed conversion ratio (FCR), protein efficiency ratio (PER) and survival rate %. Whole body protein contents for fish fed diets B, C and D were superior to the control diet. Incorporation of OM in the diets increased significantly whole body fat content. Incorporation of OM in the diets significantly increased apparent digestibility coefficient of crude protein crude fat and energy. Therefore, these findings suggest that up to 75% of FM protein can be replaced by OM protein in Nile tilapia, mono‐sex male diets.  相似文献   

16.
饥饿以及再充分投喂对鲻鱼血液生化指标的影响   总被引:2,自引:0,他引:2  
在19~24℃条件下对鲻鱼(初始体重:204.42g±23.13g)进行了不同时间的饥饿处理后再充分投喂的恢复生长实验。实验设定2种投喂方式,对照组(饱食组)在实验期间一直投喂,饥饿组在限食期则不投喂食物,重喂期则恢复投喂。实验期为8个星期。取样分别在限食期的第0、1、2、4周和重喂期的1、2、4周,每次6条鱼。结果表明:饥饿状态下,鲻鱼血糖,血脂和血浆蛋白含量都显著降低;再充分投喂后,各血液生化指标均恢复到对照组水平,实验结果表明鲻鱼饥饿4个星期后,在4个星期的恢复生长过程中产生了显著的补偿效应。  相似文献   

17.
Compensatory growth and changes in biochemical composition, hematocrit and body condition indices of juvenile flounder Paralichthys olivaceus were assessed during starvation and after refeeding. Twenty juvenile fish were stocked into each 200‐L flow‐through tank to give five treatments with three replicates per treatment: control group fish (C) were hand fed to apparent satiation twice daily for 8 wk, whereas the Sl, S2, S3, and S4 fish were hand fed to apparent satiation twice daily for 7, 6, 5, and 4 wk after 1, 2, 3, and 4 wk of starvation, respectively. During starvation, weight decreased linearly with periods of feed deprivation up to 3 wk. Survival was not significantly different among treatments. At the end of the feeding trial, weight gain (g/fish) and specific growth rate (SGR) of flounder in S2 was significantly (P < 0.05) higher than those of fish in S3 or S4, but not significantly different from those of fish in C or Sl. Feed consumption of flounder (g/fish) was proportional to duration of feeding except for that of fish in S2. Feed efficiency ratio (FER) and protein efficiency ratio (PER) values for flounder in S2 were significantly (P < 0.05) higher than those for fish in C, but not significantly different from those for fish in Sl, S3, or S4. During starvation, hepatosomatic index (HSI) and lipid content of flounder without liver decreased with periods of feed deprivation. However, HSI and condition factor (CF) for flounder in S2 were significantly (P < 0.05) higher than those for fish in Sl, S3, S4 and C except for CF in Sl at the end of the feeding trial. Proximate composition of flounder without the liver was not significantly different among treatments at the end of the feeding trial. In considering above results, juvenile flounder achieved compensatory growth with up to 2‐wk feed deprivation. Compensatory growth of flounder fed for 6 wk after 2‐wk feed deprivation was well supported by improvement in SGR, FER, and PER. HSI could be a good index to monitor changes in body condition during starvation and after refeeding.  相似文献   

18.
Abstract— The main objective of this study was to determine the effect of different levels of krill meal (KM) as a feed attractant in juvenile Nile tilapia fed soybean (SBM) diets on growth performance, feed utilization, and body composition. Fish of an initial average weight 0.8 × 0.01g were stocked in 18 glass aquaria (80 L each) at a rate of 25 fish per aquarium. Fish meal (FM 20% of the diet) was used as the sole source of animal protein in the control (Diet 1). Diets 2 to 6 had (SBM) protein with various levels of krill meal (0.0,1.5,3.0,4.5, and 6.0%, diets 2-6 respectively). Test diets were fed to satiation to triplicate groups of Nile tilapia four times daily for 20 wk. Fish fed krill meal supplemented diets had significantly ( P < 0.05) better growth performance compared with fish fed the unsupplemented and FM control diets. The krill meal increased growth of Nile tilapia by 31.9% compared to control diets (average Anal wet weight, 14.15 × 0.95 g and 10.72 × 0.2 g, respectively). Moreover, weight gains were not significantly different for fish fed diets with different levels of krill meal. Feed utilization parameters such as feed intake, feed conversion ratio, protein efficiency ratio differed significantly for fish fed krill meal diets compared with control. Digestibility of nutrient and energy of diets increased with increasing levels of krii meal. The incorporation of krill meal in diets significantly affected the protein, fat, ash, and energy of whole body composition. These results suggest that supplementation of krill meal at 1.5% in the diets of Nile tilapia as attractant or stimulant may lead to increased feed intake, growth performance, and feed utilization. Soybean meal can completely replace fishmeal in diets for juvenile tilapia.  相似文献   

19.
Two experiments were conducted to investigate the effects of feed colour on the performance of Nile tilapia (Oreochromis niloticus) larvae and fingerlings. In the first experiment, triplicate groups of newly hatched larvae (0.01 g fish−1) were stocked in 40 L glass aquaria at a density of 2 fish L−1. The fish were fed a test diet (400 g kg−1 crude protein) with six different colours (dark blue, dark green, red, dark brown, yellow and light brown) for 60 days. The best performance and survival were achieved in fish fed on dark‐coloured diets, while light‐coloured diets (yellow and light brown) resulted in inferior performance. Dark diets also produced higher body protein than light diets. Body water, lipids and ash showed irregular trends. In the second experiment, triplicate groups of Nile tilapia fingerlings (5.30 g fish−1) were stocked in 140‐L aquaria, in a recirculating indoor system. The fish were fed a test diet (350 g kg−1 crude protein) with the same colours used in the larval trial, for 60 days. Growth rates, feed efficiency, survival and body composition were not significantly affected by feed colours. These results suggest that Nile tilapia larvae are visual feeders, and they prefer dark‐coloured diets to light‐coloured diets, while fingerling fish showed no preference to diet colours.  相似文献   

20.
Abstract. Dry and fresh Azolla pinnata were evaluated as feed ingredients for fingerling and adult Nile tilapia, Oreochromis niloticus (L.). Dry Azolla was incorporated into practical diets containing approximately 30% crude protein and 360–400kcal/lOOg of GE lo replace 25,50,75 and 100% of the fish meal (FM) protein in the control diet. Fresh Azolla was also tested as a total diet for these fish. Formulated diets were fed to duplicate groups of fingerling (2–54g ± 0093) and adult (4033g ± 103) fish at a daily rate of 5% and 3% of their body weight respectively for 10 weeks. Growth and feed utilization efficiency of fish fed the control diet were significantly higher than of those fed Azolla-supplemented diets. Fish performance continued to deteriorate with increasing dietary Azolla level in the diets. This reduction was extremely sharp when dry and fresh Azolla were used as total diets. Furthermore, adult tilapia fed fresh Azolla started losing weight from the 7th week. Fish fed fresh Azolla had significantly higher moisture content than those fed formulated diets. Body protein and lipid contents were negatively correlated with Azolla levels in the diets, while body ash content showed a positive correlation. Results of this study indicate that young Nile tilapia utilizes Azolla more efficiently than the adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号