首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Feeding restriction is a strategy in shrimp farming management that may promote compensatory growth after feeding is re‐established. This study aims to evaluate the effects of two feeding restriction regimens on the compensatory growth and digestive enzymes activity of Litopenaeus vannamei reared in biofloc system. Juvenile shrimp (0.46 ± 0.18 g) were stocked (320 individuals/m3) in 310 L tanks. The experiment comprised two phases: (a) Feeding Restriction (30 days) when shrimp were submitted to three feeding regimes, Control (fed daily), R1F1 (repetitively fasted one day and fed one day) and R2F1 (repetitively fasted 2 days and fed 1 day); and (b) Refeeding (28 days) when shrimp were fed daily. In the restriction phase, shrimp growth and digestive enzyme activities were reduced in R2F1 and R1F1. However, during the refeeding phase, enzyme activities and feed conversion improve significantly in R2F1 and R1F1. Control group attained higher final weight, but its final biomass was similar to R1F1. Litopenaeus vannamei exhibited partial compensatory growth, probably due to improved feed conversion efficiency driven by increased enzyme activity. It is possible to reduce feeding by 50% (R1F1) in biofloc systems for 28 days, without compromising the biomass produced at the end of a 30‐day refeeding period.  相似文献   

2.
This study compared the effect of three sources of carbohydrates: sugar, wheat and malt flours, on water quality, water consumption, bacterial load, growth and flesh quality of Nile tilapia. Adults (120.6 ± 0.64 g) were stocked in 1.2‐m3 fibreglass tanks at a rate of 25 fish/m3. Carbohydrates were added to the biofloc tanks at a C:N ratio of 20:1. Water flow in the non‐biofloc control tanks was adjusted to 0.6 L/day. The 105‐day experiment was conducted in triplicates. Results showed that biofloc treatments (BFT) with zero water exchange had significantly higher mean total ammonia, nitrites, nitrates, alkalinity, total suspended solids and lower pH than the control treatment. The sugar BFT had the highest floc volume. Growth parameters and feed conversion ratio did not differ significantly among treatments. However, tilapia in the malt flour and control treatments had close values. Gross fish yield was higher (p < .05) in the control than the BFT treatments. Water consumption/kg tilapia produced in the control was 42 times higher than the BFT groups. Protozoa dominated the biofloc biota, and wheat flour was the best in harbouring higher bacterial populations in the gut. Protein content and ∑n‐3 fatty acids were highest in the wheat flour biofloc, while malt flour biofloc had the highest lipids. The sugar biofloc had the highest n‐3/n‐6 ratio. Tilapia muscles in the malt flour and control treatments had the highest protein and lipid contents respectively. Tilapia muscles in the wheat flour BFT had the highest ∑n‐3 fatty acids and n‐3/n‐6 ratio. It can be concluded that farming tilapia in BFT using malt or wheat flours as carbon sources is more economical in saving great amount of water with minimal discharge of pollutants without affecting tilapia growth or flesh quality.  相似文献   

3.
A 12‐week feeding trial was conducted using Nile tilapia, Oreochromis niloticus (L.) to evaluate the interactive effects of fishmeal replacement and salinity on growth, feed utilization efficiencies and relative expression of growth related genes. Two iso‐nitrogenous and iso‐energetic diets were prepared (32% protein). The control diet included 15% fishmeal (FM diet) and fishmeal component in non‐fishmeal diet (NFM) was eliminated by a mixture of poultry by‐product meal, high protein distillers dried grains and distillers dried grains with soluble. The NFM diet was supplemented with DL‐methionine and L‐lysine. Duplicated group of fish with initial mean weight of 6 g, reared in four salinity levels (0, 4, 8 and 12 g/L) were fed one of the two diets twice a day to near satiety. At the end of the experiment, growth, feed utilization efficiency and expression of growth related genes were compared. The specific growth rate (SGR), mean feed intake (MFI) and feed conversion ratio (FCR) were not affected by the diets while salinity effects were significant. The fish in the 4 g/L salinity showed the highest SGR and MFI while fish in the 0 g/L treatment showed the lowest FCR. Relative expression of hepatic IGF‐I and IGF‐II was regulated by salinity but not by the diet. Expression of growth hormone receptor gene was not affected by either diet or salinity. The present findings provide evidence for the possibility of total fishmeal replacement in saline waters (0–12 g/L) without compromising growth, feed utilization and body composition of Nile tilapia.  相似文献   

4.
This study was carried out to evaluate the effects of dietary supplementation of thermotolerant bacterium on growth and immune responses of Nile tilapia (Oreochromis niloticus). Bacillus paralicheniformis SO‐1 was isolated from marine environments and incorporated into four isonitrogenous (300g/kg crude protein; cp) and isocaloric (18 MJ/kg) diets at four concentrations: 0, 5, 10 and 20 g/kg diet. Each diet was fed to triplicate groups of Nile tilapia (41.5 ± 0.5 g average weight) at a daily rate of 3% of their biomass, three times a day for 50 days. At the end of the feeding trial, the growth rates, feed utilization efficiency (feed conversion ratio, protein efficiency ratio, protein productive value), digestive enzymes (protease, amylase and lipase) activities, immunological response (serum lysozyme activity, phagocytic activity, respiratory burst and superoxide dismutase activity) and the expression of immune‐related genes [interleukin‐1 (IL‐1), interleukin‐4 (IL‐4) and interleukin‐12 (IL‐12)] were determined. Growth rates, digestive enzymes activities and immunological parameters were significantly improved (p < 0.05) with increasing supplemental SO‐1 up to 10 g/kg. However, further increase in bacterial concentration to 20 g/kg lead to significant decline in fish performance and immune response (p < 0.05). The expression of IL‐1, IL‐4 and IL‐12 genes was significantly up‐regulated (p < 0.05) in the liver of Nile tilapia fed SO‐1‐treated diets. This study clearly demonstrated that B. paralicheniformis SO‐1 could be considered as an efficient growth promoter and immune‐stimulating probiotic for farmed Nile tilapia.  相似文献   

5.
Irrigated rice fields have enormous potential for expanding the aquaculture production in rice producing countries. Two field experiments were carried out at the Bangladesh Agricultural University, Mymensingh, to optimize the productivity of integrated rice–fish systems using Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L. Both experiments were laid out in a randomized complete block design with three replicates per treatment and regular rice monoculture as control. In the first trial, carp and tilapia were tested in single culture and in mixed culture with supplementary feeding at 2× maintenance level. The highest fish yield was obtained in the carp/tilapia mixed culture (586 ± 125 kg ha 1), followed by tilapia alone (540 ± 65 kg ha 1), and carp alone (257 ± 95 kg ha 1). Carp had significantly lower yield than the other two fish groups (p < 0.05) due to high mortality and inefficient feed utilization. As the carp/tilapia combination performed the best in the first experiment, it was tested with different inputs in the second trial, i.e. regular urea fertilization and two different feeding levels. The feeding levels were: continuous feeding at 2× maintenance level (feed level I) and a declining feeding schedule from 4× to 2× maintenance level (feed level II). The highest fish yield was obtained in feed level II (935 ± 29 kg ha 1), followed by feed level I (776 ± 22 kg ha 1), and the non-fed group (515 ± 85 kg ha 1). Yield differences between the treatments were significant at p < 0.05. Rice yields showed controversial effects between the rice–fish treatments and were dependent on the inputs provided. The highest rice production (4.2 t ha 1) was obtained from rice–fish plots with regular urea fertilization. Various significant effects of fish on water quality parameters were observed. Fish decreased the dissolved oxygen (DO) and pH value compared to rice only, especially when supplementary feed was provided. Moreover, fish stimulated the growth of phytoplankton and increased chlorophyll-a concentration. In conclusion, carp/tilapia mixed culture with supplementary feeding was found to be optimal for maximizing the output from rice–fish culture.  相似文献   

6.
Growth performance, survival and feed utilization of diploid (2n) and triploid (3n) sex‐reversed male and female Nile tilapia were evaluated at maintenance feeding (1% body weight (BW) day?1), fixed feeding (3% BW day?1) and apparent satiation feeding levels in a freshwater recirculation system comprised of thirty‐six 1‐m3 concrete tanks at the Asian Institute of Technology, Bangkok, Thailand. Triploid Nile tilapia (3n) was produced by subjecting fertilized diploid (2n) tilapia eggs to heat shock. After hatching, fish were sex‐reversed to all‐male and all‐female populations by oral administration of 17 α‐methyltestosterone (60 mg kg?1 feed) and ethynylestradiol (100 mg kg?1 feed) respectively. There was significantly higher growth with increased ration levels in both male and female groups. There were no significant differences in final BW, specific growth rate, survival rate, feed conversion ratio and protein efficiency ratio between diploid and triploid fish. Triploids had lower gonad weights than diploids, and this was particularly evident at the satiation feeding level. Triploid fish had a significantly higher apparent net protein utilization and percentage of gutted weight than diploids at all feeding levels. Higher protein utilization efficiency of triploids might be an advantage for commercial tilapia culture but further research is necessary to make such a conclusion.  相似文献   

7.
A 8‐week feeding trial was conducted to determine the effect of substituting fish oil with palm oil‐laden spent bleaching clay (SBC), a by‐product from crude palm oil (CPO) refining, on growth, feed utilization, fatty acid composition and heavy metal accumulation in the muscle of Nile tilapia, Oreochromis niloticus. Four isonitrogenous and isolipidic practical diets were formulated to contain 0, 100, 200 or 300 g kg?1 SBC. Growth performance of Nile tilapia was significantly better in fish fed the 100 g kg?1 SBC diet compared with fish fed the 0, 200 or 300 g kg?1 SBC diet. Growth and feed utilization efficiency of fish fed 200 or 300 g kg?1 SBC were similar to fish fed the control diet without added SBC. Whole‐body composition, body‐organ indices and haematocrit of tilapia were not affected by dietary treatments. Fatty acid compositions in the muscle lipid of Nile tilapia were strongly influenced by dietary treatments with progressively elevated levels of total saturates and n‐6 PUFA because of the dietary influence of these fatty acids from residual CPO adsorbed onto SBC. A gradual decrease in total n‐3 PUFA concentrations were also observed with the ratio of n‐3 to n‐6 fatty acids in muscle lipids decreasing from 4.75 to 4.41, 3.23 or 2.37 after 8 weeks on the 0, 100, 200 or 300 g kg?1 SBC diet, respectively. The arsenic, cadmium and lead concentrations in the experimental diets increased with increasing dietary levels of SBC but the concentrations of these heavy metals in the whole body and bone of Nile tilapia were not significantly different among fish fed the various diets. The present 8‐week study showed that in fishmeal‐based diets for Nile tilapia, palm oil‐laden SBC can totally replace added fish oil. The use of this presently discarded waste product from palm oil refining in tilapia diets will greatly contribute to reducing the impact of rising feed costs in the culture of tilapia in many tropical countries. Other potential benefits may include acting as a feed binder, removal of mycotoxins in fish feeds as well as adsorbing toxic substances present in the culture water.  相似文献   

8.
We evaluated growth performance and metabolic responses in Nile tilapia (Oreochromic niloticus) juveniles (30.2 ± 0.9 g) subjected to 1 (F1), 2 (F2), or 3 weeks (F3) of fasting and then refed for 10 weeks (10WR) compared to controls (FC), which were fed for the full 13-week trial. Weight gain and specific growth rate (SGR) during fasting were lower in all treatments compared to the FC. However, during refeeding, feed intake/body mass and SGR increased in F1, F2, and F3, inducing partial compensatory growth. The hepatosomatic index (HSI), visceral fat index (VFI), liver glycogen (LG), and carcass lipid levels dropped in all fasted fish compared to FC (P < 0.05), showing a depletion of stored nutrients such as fat and LG. Along with LG, fat reserves were mobilized during fasting to maintain basal metabolism and survival, but these energy constituents returned to control levels at 10WR, at which time HSI was higher in all refed fish compared to FC. Additionally, the variables VFI, LG, and lipid in carcass increased in all refed fish, equaling those of FC at 10WR. The results showed that, in contrast with other protocols that used smaller tilapia juveniles, the feeding strategies utilized for Nile tilapia juveniles in this study (1 to 3 weeks of fasting and 10WR) were able to induce only partial compensatory growth. It can be concluded that in situations that require complete food restriction in juvenile Nile tilapia (30 g), an acceptable strategy is to limit the period of fasting to 1 week or less to minimize losses and to achieve partial compensatory growth.  相似文献   

9.
The objective of this study was to evaluate growth, body chemical composition and lipid profile of Nile tilapia juvenile fed with Schizochytrium sp. Two hundred and forty Nile tilapia (Oreochromis niloticus) juvenile (1.33 ± 0.11 g) were distributed in 20 aquariums, at the density of 12 fish per aquarium. The juvenile were fed with five levels of Schizochytrium sp.: Control (0 g/kg of Schizochytrium sp. in feed); AS10 (10 g/kg of Schizochytrium sp. in feed); AS20 (20 g/kg of Schizochytrium sp. in feed); AS30 (30 g/kg of Schizochytrium sp. in feed) and AS40 (40 g/kg of Schizochytrium sp. in feed). The inclusion of Schizochytrium sp. increase the body weight, weight gain, final biomass and biomass gain of tilapia juvenile. The body crude protein of tilapia was increased after addition of microalgae. Juvenile lipid profile also was influenced when fed with 40 g of Schizochytrium sp. per kg and have it levels of omega‐3 and docosahexaenoic acid (DHA) increased, and omega 6:3 ratio decreased. Tilapia juvenile fed with Schizochytrium sp. per kg have better growth, omega‐3 and DHA levels rising in the body, being a considerable source of fatty acids for human nutrition. Levels above 20 g of Schizochytrium sp. per kg in the feed favour the increase of protein in Nile tilapia body.  相似文献   

10.
The relative contribution of the dietary nitrogen supplied by fish meal and a biofloc meal to the growth of Pacific white shrimp was evaluated using stable isotope analysis. Biofloculated material was obtained from an experimental tilapia culture system. Five formulated diets were supplied. Two of them consisted in isotopic controls having only fish meal or biofloc meal as protein source. Three mixed diets were formulated with varying proportions of these ingredients on a dietary nitrogen basis (75:25, 50:50 and 25:75). At the end of the trial, survival rates were similar (92–100%) but significant differences in mean final weight were observed and a negative correlation between the inclusion of biofloc meal and weight gain was evidenced. Mean final weight in shrimp fed on diet containing only fish meal was 2.8 g, while mean final weight of animals fed on diet containing 50% biofloc was 1.9 g. Isotopic mixing models indicated that all diets contributed higher proportions of dietary nitrogen from fish meal than from biofloc meal. Dietary nitrogen available in diets containing 25%, 50% and 75% of biofloc meal was incorporated in muscle tissue as 5%, 41% and 64% respectively. Diet supplying 25% of nitrogen from biofloc was the only mixed diet eliciting growth comparable to diet containing only fish meal. Lower growth and nitrogen deposition in shrimp fed on diets containing high proportions of biofloc meal were possibly associated to the use of only two protein sources and a restriction of essential amino acids.  相似文献   

11.
This study was undertaken in order to determine the effect of feeding heat-treated, defatted soybean meal (SBM) on growth, feed utilization, and body composition of Nile tilapia (Oreochromis niloticus). A control diet (SBM0) of 378 g kg−1 crude protein with 18.4 kJ g−1 gross energy was formulated, and three diets identical to the basal diet were autoclaved for 10, 20, or 30 min. The autoclaved diets were named SBM10, SBM20, and SBM30, respectively. Each diet treatment was applied to triplicate groups of 30 fish (2.45 ± 0.03 g) per tank (120 l). The fish were hand fed to satiation four times daily for 45 days. At the end of the feeding trial the fish fed with the SBM30 diet had significantly (P < 0.05) higher weight gain and protein efficiency ratio than those fed with the other diets. No feed-related mortality was observed during the whole experimental period. Heating SBM for 30 min reduced trypsin inhibitor activity (TIA) and increased apparent protein digestibility (APD), and indicated significant differences (P < 0.05) among various treatments. No significant differences were found in carcass moisture, lipid, and ash of fish fed with different experimental diets. An increase in the body protein content of fish fed with diet SBM30 was significantly (P < 0.05) higher than in all other experimental groups. The results of this study seem to indicate that autoclaving the SBM for 30 min improved its nutritional value in practical feeds for Nile tilapia fingerlings.  相似文献   

12.
Nile tilapia (Oreochromis niloticus) is one of the most important cultured species worldwide. The research aims to clarify the feeding characteristics, such as daily feeding pattern of Nile tilapia using a self‐feeding technique. The feeding pattern was conducted under two rearing conditions, indoor treatments under a controlled light regime (LD 12:12) and constant water temperature (25°C), and outdoor treatments under natural conditions which consisted of duplicate trials with two periods each. The outdoor treatment was carried out from early summer through late autumn in Mie, Central Japan. Daily self‐feeding activity of Nile tilapia in indoor treatments was nearly daytime feeding pattern, synchronizing with the given photoperiod (24 hr). However, the self‐feeding activity in the outdoor experiments from early summer to early autumn was almost daytime feeding pattern, but it became less clear and shifted to a nighttime feeding profile in late autumn. The results revealed that Nile tilapia has a dualistic capacity for demand‐feeding both in light and dark phases. These results might have been caused by the seasonal change in light intensity and/or water temperature. Information obtained from the self‐feeding experiments enables us to identify the influence of environmental changes on the physiological condition of farmed fish through their expression of appetite.  相似文献   

13.
A 12-week growth trial was conducted in a flow-through system to investigate the chronic toxic effect of dietary intake of cyanobacteria on growth, feed utilization and microcystins accumulation in Nile tilapia (Oreochromis niloticus L.) (initial body weight: 5.6 g). Six isonitrogenous and isocaloric diets were formulated to include different contents of cyanobacteria with the dietary microcystins increasing from 0 to 5460.06 ng/g diet. The results showed that dietary intake of cyanobacteria could increase the growth of tilapia while there are no impacts on feed conversion efficiency or mortality. Feeding rate was higher for the diets containing highest cyanobacteria. Microcystins were mostly accumulated in fish liver. The relationship between microcystins contents in muscle, liver, spleen and dietary intake could be described by quadratic equations.Microcystins content in the muscle of Nile tilapia in present study exceeded the upper limit of the tolerable daily intake (TDI) of microcystins suggested by the WHO (0.04 μg/kg body weight/d). It is suggested that Nile tilapia fed on toxic cyanobacteria is not suitable for human food.  相似文献   

14.
Feeding strategies of tilapia (initial average weight: 32 g) cultivated with Biofloc technology (BFT) (carbon source: sugarcane, C:N ratio: 6:1) for 56 days were studied. A 4 × 3 factorial experimental design was used with four feeding frequencies (one, two, three and four times a day) and three feeding rates (50%, 75% and 100% consumption in relation to apparent satiety), with four replicates. Lower levels of dissolved oxygen, protein retention rate and body protein content were found in fish fed once a day. The reduction in feeding rate resulted in lower average final weight and reduced growth but promoted a decrease in the concentration of total ammonia nitrogen, solids, hepatosomatic index and body lipids. We found better efficiency of protein utilization at 75% feed. The nutritional value of the floc was not affected by the feeding frequency, and the feeding rate reduction from 100% to 75% did not alter the protein content of the floc. Thus, twice‐daily feeding frequency is sufficient for Nile tilapia fingerlings reared in BFT. Although the feeding rate of 100% satiety has led to better performance, it may not be the best option in BFT due to higher feed conversion and reduction of water quality.  相似文献   

15.
Nile tilapia (Oreochromis niloticus) is currently one of the most farmed freshwater fish and contributes significantly to total global aquaculture production. The genetically improved strain of O. niloticus (GIFT) was introduced to Papua New Guinea (PNG) in 1999 to improve food and income security. The high cost and low availability of commercial fish feed hinder the growth of GIFT farming in PNG. Stable carbon and nitrogen isotopes were used to determine the role of supplementary and natural food sources in the diet of GIFT in pond‐based aquaculture. Two treatments were used: treatment 1 was daily feeding, and treatment 2 was weekly feeding, each with three replicates. Isotopic analysis of muscle tissue and all potential food sources showed that pellet feed contributed 7% to the growth of GIFT in daily‐fed ponds and 33% in the weekly‐fed ponds. Highly enriched δ15N values for chicken manure, compared to depleted values for GIFT and other natural food sources in both treatments, clearly indicate insignificant contributions of this input to production. After 90 days of cultivation, the average final body weight of GIFT receiving daily feed inputs was 134 g (average 19 cm), while for weekly‐fed it was 92 g (17 cm). The feed conversion ratio (FCR) was poor (6.4:1) in the daily‐fed GIFT ponds compared to a better, and preferable, FCR (1:1) in the weekly‐fed ponds. The findings of this study show that pelleted feed was not the major contributor to the growth of GIFT. Genetically improved farmed tilapia aquaculture should focus on enhancing natural food availability for fish production.  相似文献   

16.
During a growout period of 14 weeks, the productive performance, organosomatic indices and body composition of the Nile tilapia Oreochromis niloticus cultivated at high density reusing the water from systems with biofloc technology (BFT) were evaluated. Two treatments: tilapia cultured in biofloc (TB) and tilapia cultured in reused water biofloc (RW) were established. Mixed sex, juvenile Nile tilapia (average weight and length: 79.28 ± 14.44 g and 12.44 ± 0.70 cm) were stocked into 6 experimental units (0.2 m3) at a density of 100 fish/m3. Temperature, dissolved oxygen, total dissolved salts, pH, NH4–N, NH3–N and NO3–N were recorded daily, while NO2–N, general hardness, carbonate hardness and settleable solids were recorded weekly. The weight and length of the tilapias were recorded biweekly. Survival, productive performance, proximal composition and organosomatic indices of Nile tilapia were evaluated. The water parameters in RW treatment such as pH, total dissolved salts, NO2–N, NO3–N and carbonate hardness were significantly greater (p < 0.05), when compared to those obtained in TB treatment. Survival rate was > 98% under both treatments. The final weight (TB = 163.09 ± 42.34 g, RW = 159.23 ± 39.92 g), protein (19.1%) and lipid (2.2%) content of the tilapia were non-significantly different between treatments. In addition, no significant differences in the gonadosomatic and hepatosomatic indices were observed either between tilapia sex or between the treatments. The results suggest that the intensive cultivation of Nile tilapia in biofloc can be established using reuse water from BFT systems, without adverse effects on their survival, productive performance, proximal composition and gonadal development.  相似文献   

17.
Abstract In an attempt to identify appropriate feeding rates for multispecies of fish raised in fertilized earthen ponds, the present work was conducted over a 19‐week experimental period to establish the growth performance, production and body composition of Nile tilapia, common carp and silver carp fed 0.0%, 0.5%, 1.0%, 3.0%, 5.0% biomass and to apparent satiation (treatments). Twelve ponds were stocked with a similar number and weight of each fish species. Two ponds were assigned to each of the treatments, and a 25% protein pelleted fish feed was used to feed fish at the specified rate of feeding. At the end of the experiment, growth, weight gain, survival, yield and body composition of fish groups were affected by the treatments. The economic effectiveness also varied among treatments. The most conspicuous attribute of the feeding rates was its lack of influence on growth (g day?1), weight gain (g per fish), yield (kg ha?1) or body composition of silver carp. The results of whole‐body proximate analysis indicated that various feeding rates had either an irregular pattern or no effects on the protein and ash gain per 100 g of fish body weight (bw) gain. The most notable exceptions were significant (P < 0.05) increases in body fat and gross energy gains in Nile tilapia, common carp and silver carp accompanied by decreases in percentages of moisture (but not in silver carp) as feeding rate increased. Among the six different feeding levels, feeding to apparent satiation (feed amount was equivalent to 2.67% of fish bw day?1) appeared to be optimal, as it significantly (P < 0.05) supported the highest fish production, income and net profit compared with all other treatments except for the 3% feeding level, for which the differences in those measurements were comparable.  相似文献   

18.
A 12-week experiment was carried out to evaluate compensatory growth of 6.6 g Nile tilapia Oreochromis niloticus L. under three cyclical regimes of feed deprivation and refeeding. The deprivation and refeeding regimes included four cycles of 1 week of deprivation and 2 weeks of refeeding (S1F2), two cycles of 2 weeks of deprivation and 4 weeks of refeeding (S2F4) and one cycle of 4 weeks of deprivation and 8 weeks of refeeding (S4F8). A group of fish fed to satiation twice daily throughout the experiment served as control. At the end of the refeeding periods, fish deprived and refed cyclically had higher feed intake and specific growth rates (SGR), but lower body weight, than that of the control fish. There was no significant difference in feed efficiency ratio (FER) between the control and fish subjected to feed deprivation during the refeeding periods, and nitrogen retention efficiency (NRE) was not different between any two treatments throughout the experiment. At the end of the experiment, fish subjected to feed deprivation had lower body weight but similar body composition, relative to those of the control fish. No significant differences were found in final body weight, NRE and body composition between the fish subjected to different cycles of deprivation and refeeding, but the fish subjected to one cycle of deprivation and refeeding exhibited high mortality. Our results indicate that partial growth compensation induced by various cycles of feed deprivation and refeeding does not confer a huge advantage in terms of enhancing the production efficiency and reducing the nitrogen waste output in Nile tilapia farming 29–30 °C.  相似文献   

19.
Supplemental Feeding of Tilapia in Fertilized Ponds   总被引:1,自引:0,他引:1  
The addition of feed to fertilized fish ponds was evaluated by adding feed alone, feed plus fertilizer, or fertilizer alone to nine ponds stocked with Nile tilapia Oreochromis niloticus . Two experiments were conducted. The first had 500 fish per 250 m2 pond in 3 treatments: ad-libitum feeding; fertilizer only; or fertilizer and ad-libitum feeding. The second experiment had 5 treatments with 750 fish per pond ad-libitum feed only; fertilizer only; or 0.25, 0.50, and 0.75 satiation ration plus fertilizer. Ponds in Thailand were maintained for 155–162 d, during which chemical and physical properties were monitored. In experiment 1 tilapia growth was highest in feed only ponds, and lowest in fertilizer only ponds. Net yield did not differ significantly among treatments, due to variation in survival. In experiment 2, tilapia growth was lowest in fertilizer only ponds, intermediate in 0.25 ration ponds, and highest in 0.50, 0.75, and ad-libitum ponds. The latter treatments were not significantly different. Multiple regressions for each experiment indicated only 47–87% of the variance in growth was explained by feed and fertilizer input, while 52–89% of the variance in yield was explained by those factors. For both experiments combined, 90.3% of the variance in growth was explained by feed input, fertilizer input, alkalinity, and total inorganic nitrogen concentration. For yield, R 2 was 0.888 and the regression included feed input, pH, and number of low dissolved oxygen events. Experiment 1 appeared to approach carrying capacity near the end, while no reduction in growth occurred in experiment 2 at higher fish density and biomass. Reductions in growth in experiment 1 were not correlated with declining water quality late in the grow out. Combinations of feed and fertilizer were most efficient in growing tilapia to large size (500 g) compared to complete feeding or fertilizing alone.  相似文献   

20.
The present research explored the effects of Bacillus subtilis on water quality, growth, immune responses, endotoxemia and protection against lipopolysaccharide (LPS) damages in Nile tilapia Oreochromis niloticus under biofloc system. B. subtilis was added at 0, 1, 2, 3 and 4 grams (1.19 × 108 CFU/g) per kg of basal diet, named T1 (control), T2, T3, T4 and T5, respectively, and fed to fish (14.82 ± 0.42 g) for 50 days. The concentrations of TAN, NO2 and NO3 were significantly reduced, and fish fed probiotics displayed significantly better growth performances versus the control, concomitantly with significantly enhanced activities of digestive enzymes. They also showed significantly declined serum glucose and cholesterol vice versa significantly improved immune responses (total protein, albumin, globulin, lysozyme, alternative complement, protease, immunoglobulins, alkaline phosphatase and respiratory burst), antioxidant capacity (superoxide dismutase, total antioxidant capacity, malondialdehyde) and skin mucus parameters (total protein, lysozyme, alternative complement, protease, immunoglobulins). Meanwhile, significantly lower endotoxin (LPS) concentrations were detected in the intestines and serum of fish fed probiotics. LPS challenge induced profound oxidative stress and impaired immune responses. Interestingly, probiotic alleviated LPS‐induced damages and restored mentioned parameters. In conclusion, B. subtilis effectively enhanced fish production, immunity and protection against LPS‐induced damages in tilapia under biofloc system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号