首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

2.
Over the coming decades, climate change will increasingly affect forest ecosystem processes, but the future magnitude and direction of these responses is uncertain. We designed 12 scenarios combining possible changes in tree growth rates, decay rates, and area burned by wildfire with forecasts of future harvest to quantify the uncertainty of future (2010-2080), timber growing stock, ecosystem C stock, and greenhouse gas (GHG) balance for 67 million ha of forest in British Columbia, Canada. Each scenario was simulated 100 times with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Depending on the scenario, timber growing stock over the entire land-base may increase by 14% or decrease by 9% by 2080 (a range of 2.8 billion m3), relative to 2010. However, timber growing stock available for harvest was forecast to decline in all scenarios by 26-62% relative to 2010 (a range of 1.2 billion m3). Forests were an annual GHG source in 2010 due to an ongoing insect outbreak. If half of the C in harvested wood was assumed to be immediately emitted, then 0-95% of simulations returned to annual net sinks by 2040, depending on scenario, and the cumulative (2010-2080) GHG balance ranged from a sink of −4.5 Pg CO2e (−67 Mg CO2e ha−1) for the most optimistic scenario, to a source of 4.5 Pg CO2e (67 Mg CO2e ha−1) for the most pessimistic. The difference in total ecosystem carbon stocks between the most optimistic and pessimistic scenarios in 2080 was 2.4 Pg C (36 Mg C ha−1), an average difference of 126 Tg CO2e yr−1 (2 Mg CO2e yr−1 ha−1) over the 70-year simulation period, approximately double the total reported anthropogenic GHG emissions in British Columbia in 2008. Forests risk having reduced growing stock and being GHG sources under many foreseeable scenarios, thus providing further feedback to climate change. These results indicate the need for continued monitoring of forest responses to climatic and global change, the development of mitigation and adaptation strategies by forest managers, and global efforts to minimize climate change impacts on forests.  相似文献   

3.
We used national scenario analyses to examine the effects of harvesting intensity on the development of forest resources, timber supply, carbon balance, and biodiversity indicators of Finnish forestry in nine 10-year simulation periods (90-year simulation period) under the current climate. Data from the 11th National Forest Inventory of Finland were used to develop five even-flow harvesting scenarios for non-protected forests with the annual harvest ranging from 40 to 100 million m3. The results show that the highest annual even-flow harvest level, which did not decrease the growing stock volume over the 90-year simulation period, was 73 million m3. The total 90-year timber production, consisting of harvested volume and change in growing stock volume, was maximized when the annual harvest was 60 million m3. Volume increment increased for several decades when harvested volume was less than the current volume increment. The total carbon balance of forestry was the highest with low volume of harvested wood. Low harvested volume increased the values of biodiversity indicators, namely volume of deciduous trees, amount of deadwood and area of old forest.  相似文献   

4.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   

5.
With the analytical tool: Frankfurt Harvested Wood Products (HWP) Model, carbon stocks and carbon stock changes of HWP, either in USE or in LANDFILLS, have been evaluated from the readily available statistical data base of the FAO, FAOSTAT, on the wood commodities: “Sawnwood and Wood-based Panels” and the paper commodities: “Paper and Paperboard”. Essential differences have been found between the individual 15 EU countries in the comparison of the Stock Change Approach and the Production Approach, as well as in the comparison of the stock changes of HWP with the National Greenhouse Gas (GHG) budgets. The stock changes for the HWP in USE within the EU-15 Community have been calculated to be 10.83 Mt C/a (39.71 Mt CO2/a) based on the Stock Change Approach and 9.81 Mt C/a (35.97 Mt CO2/a) for the Production Approach, respectively. These numbers can be compared to the total GHG Inventory of the EU-15 of 4,095 Mt CO2 equivalents, including all six Kyoto gases, which shows that the carbon sequestration of HWP in USE is of the order of 1% relative to GHG Inventory. The GHG balance for the carbon stock changes of HWP in LANDFILLS is of similar magnitude as for the HWP in USE, and therefore a sink when methane outgasing is disregarded. However, when methane outgasing is considered, which is formed as a 1:1 mixture with CO2 under the prevailing anaerobic conditions the GHG balance results in minus 10.0 Mt C equivalent/a and minus 10.6 Mt C equivalent/a for the Stock Change Approach and the Production Approach under the parameters chosen in this study. Presented in Dublin, October 6–9, 2004, COST-21 Plenary Session.  相似文献   

6.
This study explores the economic feasibility of several long-rotation afforestation scenarios for southern Ontario, Canada. Three species, red pine (Pinus resinosa Ait.), Norway spruce (Picea abies L.) and black walnut (Juglans nigra L.) are examined. We integrate growth and yield models, site suitability maps, and several management scenarios to investigate the investment attractiveness of these species inclusive and exclusive of carbon sequestration values. We report net present values (NPV), internal rates of return (IRR) and two break-even price metrics. For wood value only scenarios the IRRs range from 4.3 to 4.6% for red pine and 3.4–3.6% for Norway spruce (for the most attractive 10,000 ha, in a single rotation scenario). Black walnut had rates of return 3.5–3.7% for the most attractive 10,000 ha area. Adding carbon valued at Cdn $3.4 per metric ton CO2 − e (roughly 2005 prices in the Chicago Climate Exchange) increases rates of return by about 0.6% for red pine and Norway spruce and 0.4% for black walnut scenarios. Perhaps surprisingly these returns are comparable and better than 20-year rotation hybrid poplar plantations. To achieve a 6% real rate of return break-even carbon prices were $10.7/t CO2 − e for red pine, $12.6/t CO2 − e for Norway spruce and $17.2/t CO2 − e for black walnut (again for the “best” 10,000 ha). Although somewhat unremarkable, the results suggest that these longer-rotation species may be a better investment than perhaps previously expected if landowners have the appropriate site conditions.  相似文献   

7.
India is the world’s tenth most forested nation with 76.87 M ha of forest and tree cover occupying 23.4% of its geographical area. Forests—with their intrinsic of carbon sequestration and storage values—are in the front line of India’s climate change mitigation strategies. This paper provides estimates of sequestered carbon in India’s forest and tree cover for the years 1995 and 2005 as per the IPCC good practice guidelines method. It is based on the primary data for the soil carbon pool through collecting soil samples by laying out quadrats across the country and secondary data for the growing stock of all forest and tree cover in the country. The estimates are compared with current and future projected emissions. It is found that conservation policies have resulted in increase of the country’s forest carbon stocks from 6244.8 to 6621.6 Mt with an annual increment of 37.7 Mt of the carbon from 1995 to 2005. Annual CO2 removal by the forests is enough to neutralise 9.3% of the country’s 2000 level emissions. Continued removals by the forest and tree cover would offset 6.5 and 4.9% of India’s projected annual emissions in 2010 and 2020 respectively. Economically, the annual value of this forest carbon in the international market is about US $188 million. The result is of use in the REDD and REDD+ context for India.  相似文献   

8.
[目的]通过制定森林管理参考水平,计量并核算森林管理活动的合格净碳汇清除量。[方法]采用核证减排标准中农业、林业和其他土地利用项目的自愿碳标准,选取其中改善森林管理的项目方法学标准,并结合不可抗力及湖南会同县的杉木人工林林地资源现状,进行计量和核算湖南会同县杉木人工林的合格碳汇量。该方法学标准包括4个碳库,即地上部分、地下部分、枯死木和木质林产品。[结果]对30年生和23年生杉木人工林进行森林管理活动后,林分碳储量变化量和碳汇量都有明显增加。森林管理参考水平在考虑皆伐的碳排放后的净碳汇量为-82.79 t二氧化碳当量·hm~(-2),30年生和23年生的总碳汇量分别为441.00、715.46 t二氧化碳当量;实际合格总碳汇量分别为606.59、881.06 t二氧化碳当量。[结论]不同的森林管理采伐强度对30年生和23年生林分碳汇量的影响差异显著。本文分别基于湖南会同森林生态实验站第1代杉木人工林建立参考水平和生态站2代杉木人工林制定参考水平核算会同县杉木人工林碳汇量,结果是基于后者参考水平核算的会同县杉木人工林合格的碳汇量比基于前者参考水平核算的多30 t二氧化碳当量·hm~(-2)。  相似文献   

9.
An ecosystem model (Sima) was utilised to investigate the impact of forest management (by changing both the initial stand density and basal area thinning thresholds from current recommendations) on energy wood production (at energy wood thinning and final felling) and management-related carbon dioxide (CO2) emissions for the energy wood production in Finnish boreal conditions (62°39′ N, 29°37′ E). The simultaneous effects of energy wood, timber and C stocks in the forest ecosystem (live and dead biomass) were also assessed. The analyses were carried out at stand level during a rotation period of 80 years for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) growing in different fertility sites. Generally, the results showed that decreased basal area thinning thresholds, compared with current thinning, reduced energy wood (logging residues) and timber production, as well as carbon stocks in the forest ecosystem. Conversely, increased thinning thresholds increased energy wood production (ca. 1–27%) at both energy wood thinning and final felling and reduced CO2 emissions (ca. 2–6%) related to the production chain (e.g. management operations), depending on the thinning threshold levels, initial stand density, species and site. Increased thinning thresholds also enhanced timber production and carbon stocks in the forest ecosystem. Additionally, increased initial stand density enhanced energy wood production for energy wood thinning for both species, but this reduced energy wood production at final felling for Scots pine and Norway spruce. This study concluded that increases in both initial stand density and thinning thresholds, compared with the current level, could be useful in energy wood, timber and carbon stocks enhancement, as well as reducing management-related CO2 emissions for energy wood production. Only 2.4–3.3% of input of the produced energy (energy wood) was required during the whole production chain, depending on the management regime, species and sites. However, a comprehensive substitution analysis of wood-based energy, in respect to environmental benefits, would also require the inclusion of CO2 emissions related to ecosystem processes (e.g. decomposition).  相似文献   

10.
Although it is known that forestry mitigates carbon emissions to some degree, there is still a need to investigate the extent to which changes in forest management regimes affect the carbon cycle. In a climate-change scenario, forest management schemes must be optimized to maximize product supply and minimize environmental impacts. It is difficult to predict the mitigating effects of different silvicultural regimes because of differences in the growth characteristics of each species, destination of products, and industrial efficiencies. The objective of the present study was to use a modeling approach to evaluate the effects of different management regimes for fast growing species in southern temperate Europe in relation to mitigating climate change. A comprehensive study was carried out considering the C sink effect in biomass, soil and wood products, the substitutive effect of bioenergy, and particular conditions of the forest industry in southern Europe. The mechanistic CO2Fix model was parameterized for three species used in fast growing plantations in southern Europe: Eucalyptus globulus, Eucalyptus nitens, and Pinus radiata. Data from 120 plots covering the complete age range observed for each species were used to calculate changes in C stocks in aboveground biomass and organic and mineral soil and to validate the parameterized model for these conditions. Additional information about the efficiency of forest industry processes in the region was also considered. A strong bias in soil organic carbon estimation was observed and attributed to overestimations in the decomposition rates of soil compartments. Slight bias was also observed in the carbon biomass estimation when forest-specific yield models were used to simulate afforestation over former pastureland. As regards the model sensitivity, the Yasso model was strongly robust to turnover of leaves, roots, and branches. The chip wood production alternative yielded higher carbon stock in biomass and products, as well as in bioenergy substitution effect, than the sawn wood production alternative. Nevertheless, the sawn wood alternative was the most effective as regards the C stock in the soil. Site index had an important effect for all species, alternatives, and compartments, and mitigating effects increased with site index. Harvesting of clearcutting and thinning slash for bioenergy use led to a slight decrease in the soil carbon equilibrium but significantly increased the mitigation effect through bioenergy use.  相似文献   

11.

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

  相似文献   

12.
The growing stock more than doubled from 1.6 to 3.4 million m3 between 1912 and 2005 in forests on an area of 387 km2 in southern Finland. The stock expansion continued for 93 years noting interim results, which were available for 1959, 1982, 1994 and 1999. Forested area in the region hardly changed. Carbon sequestration was mainly a result of a long-term recovery from forest degradation, a legacy of land use in the 18th and 19th centuries. Tree demography responded to management change especially of mature stands: Average tree size and stocking density of stands increased. On average the expanding biomass stock sequestered 18 tons C annually per km2 (18 g C per m2). In comparison, the emissions of fossil carbon in the region were estimated at 12 tons C per km2 (12 g C per m2) on average. However, fossil CO2 emissions exceeded biomass sequestration in recent decades. The powerful and persistent expansion of the carbon stock was an unintended co-benefit of forestry, which was motivated by the intention to improve timber yield. On the more negative side the change in management introduced clear-cuts, and a loss of diverse elements of the pre-industrial biota.  相似文献   

13.
  • ? This study describes the scenarios of likely development of carbon pools in managed forest ecosystems of the Czech Republic. The analysis was based on a matrix scenario model (EFISCEN), adopting a novel parameterization based on forest stand site types and forest typology. The model was constrained by practical management rules as prescribed by the Czech Forestry Act and used to assess production potential for the next five decades under three management and three climate scenarios. The analysis provided data on carbon pool development, including both tree biomass and soil compartments.
  • ? For the tested scenarios of sustainable forest management (wood removals not exceeding increment) the model indicated a slight increase of soil carbon pool. For the possibly largest removals (maximum sustainable felling scenario), soil carbon stabilized within two or three decades reaching a mean value of about 8.1 kg/m2 for. At the same time, the mean carbon stock held in biomass reached about 10.2 kg/m2 including belowground parts. No decline of soil carbon was observed for any of the tested scenarios.
  • ? We conclude that it is reasonable to assume that soil carbon is not a source of carbon under the current management constraints as implemented in the Czech forestry practice.
  •   相似文献   

    14.
    The Kyoto Protocol brought a new forest function into focus: forests as carbon sinks. This new forest function may lead to new conflicts, because on the one hand, Switzerland has decided to account for forest management under Kyoto Protocol (Article 3.4), and on the other hand, Swiss Forestry statistics and the Swiss National Forest Inventory indicate that increasing amounts of wood are being harvested. This trend seems likely to continue. In this study, we used the empirical forest model MASSIMO and the soil model YASSO to analyse four different forest management scenarios. These scenarios basically feature different levels of harvesting frequencies and different rotation length, as well as their impact on regional potentials for carbon sequestration and harvesting amounts. Results were analysed both for the whole of Switzerland and for two very different regions: The Swiss Eastern Plateau and the Swiss Eastern Alps. The results indicate that Swiss forests can provide an increasing amount of harvested wood (+18% in relation to the base year 1996) for approximately 20 years and act as a carbon sink accountable under the Kyoto Protocol (0.5 million tons carbon per year). The corresponding forest management strategy aims for a sustainable and harvestable increment and may, therefore, avoid spurious carbon maximization in forests that can happen by accounting for only forest systems, and not for the effect of substitution of non-wood products and fossil fuels by forest products. The regional results indicate that (1) the carbon sink effect of Alpine forests in Switzerland might be limited, because generally, Alpine forests have low growth and yield and (2) a large increase in harvesting may lead to regional carbon sources and necessitate regional monitoring of increment to avoid overexploitation. As MASSIMO does not include the impacts of climate change, the conclusions of this study cannot be interpreted as actual predictions into the future but portray the impact of the applied management actions on the respective trends in carbon stocks and stock changes. They are, therefore, a contribution to support future management decisions. Further studies should focus on interactions with additional forest functions such as the preservation of biodiversity, increase the consideration of forest damage and account for the effect of climate change.  相似文献   

    15.

    Context

    Prediction of the effect of harvests and climate change (CC) on the changes in carbon stock of forests is necessary both for CC mitigation and adaptation purposes.

    Aims

    We assessed the impact of roundwood and fuelwood removals and climate change (CC) on the changes in carbon stock of Finnish forests during 2007–2042. We considered three harvest scenarios: two based on the recent projections of roundwood and fuelwood demand, and the third reflecting the maximum sustainable cutting level. We applied two climate scenarios: the climate was in the state that prevailed around year 2006, or it changed according to the IPCC SRES A1B scenario.

    Methods

    We combined the large-scale forestry model MELA with the soil carbon model Yasso07 for mineral soils. For soils of drained, forested peatlands, we used a method based on emission factors.

    Results

    The stock change of trees accounted for approximately 80 % of the total stock change. Trees and mineral soils acted as carbon sinks and the drained peatland soils as a carbon source. The forest carbon sink increased clearly in both of the demand-based scenarios, reaching the level of 13–20 Tg C/year (without CC). The planned increase in the use of bioenergy reduced the forest sink by 2.6 Tg C/year. CC increased the forest carbon sink in 2042 by 38 %–58 % depending on the scenario. CC decreased the sink of mineral soils in the initial years of the simulations; after 2030, the effect was slightly positive. CC increased the emissions from the drained peatland soils.

    Conclusions

    It is likely that forest land in Finland acts as a carbon sink in the future. The changes in carbon stocks of trees, mineral soils, and peatland soils respond differently to CC and fuelwood and roundwood harvests.  相似文献   

    16.
    The net gain of carbon in European Union (EU) forest vegetation during 1990–2005 was estimated at 360–400 Tg CO2 year−1 by analysing international data. This amount is at low end of the range of recent corresponding estimates, but greater than earlier estimates published for the period 1971–1990. The sequestration took place almost exclusively in areas which were already forested in 1990. In 2005, new plantations, established after 1990, contributed only about 8% to the estimated net gain. The sequestration was estimated to be the greatest in Germany, France, Italy, Finland and Poland regardless of data source and method of estimation. On a per capita basis, the sequestration was estimated to be the greatest in Finland and Latvia. Carbon sequestration in forests is an important component of the long-term carbon balance of the EU. Carbon sequestration in forests is partly driven by a recovery of the ecosystems from human-induced degradation in the 19th century and the first half of the 20th century. Forest management has affected carbon sequestration and merits attention in climate policy presuming that new policies and measures are reconciled with those already in place for the promotion of the diverse goals of land management in Europe.  相似文献   

    17.
    Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008?C2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2?C0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing.  相似文献   

    18.
    This analysis employs a spruce budworm (Choristoneura fumiferana Clem.) decision support system to examine costs and benefits of sequestering (protecting) carbon in forests through pest management. We analyzed 24 alternative spruce budworm protection scenarios for outbreaks on Prince Albert Forest Management Area (PAFMA) in Saskatchewan and Crown License 1 in New Brunswick. Scenarios included two outbreak severities (moderate and severe), three protection frequencies (very aggressive—protecting every year of the outbreak; aggressive—protecting the peak 3 years of outbreak; and semi-aggressive—protecting every second year of outbreak), and four protection program sizes (10,000 ha, 25,000 ha, 100,000 ha, or 150,000 ha). Under a severe outbreak, the largest (150,000 ha), very aggressive protection scenario provided the highest net CO2 protected at 24.95 million metric tons (Mt) in PAFMA and 29.19 Mt in License 1. This protection scenario also provided the highest net present value at $64.23 M and $91.36 M in PAFMA and License 1, respectively. On the other hand, benefit/cost ratios were maximized under the smallest (10,000 ha) protection size at 11.90 and 15.37 using the aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. Finally, the discounted cost per ton of CO2 protected was minimized at $0.48 and $0.37 using the smallest aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. The comparable costs and benefits from the moderate outbreak scenarios were similar, but generally less than, the severe outbreak scenarios. These results provide forest managers with important information needed to justify such carbon sequestration programs on economic grounds.  相似文献   

    19.
    Forests provide wood products and feedstock for bioenergy and bio-based products that can mitigate climate change by reducing carbon emissions. In order to assess the effects of forest products on reducing carbon emissions, we analyzed the carbon balance for individual carbon pools across the forest supply chain over a long period of time. We simulated particular forest supply chain activities pertaining to even-aged management of pine stands in South Korea to demonstrate our methods. Two different rotation scenarios (i.e., 40 and 70 years) were assessed over the 280-year time horizon in terms of temporal changes in carbon stock in each carbon pool along the supply chain, carbon transfer between carbon pools, substitution effects, and delayed carbon release by wood products. We found that the average carbon stock level was higher for the 70-year rotation scenario, but the total amount of gain in carbon was higher for the 40-year rotation at the end of the time horizon. This study confirms that forest products and energy feedstock can both reduce carbon emissions and increase carbon storage. However, the complexity of carbon accounting along the supply chain warrants a thorough evaluation from diverse perspectives when it is used to assess forest carbon management options.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号