首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Juvenile chum salmon Oncorhynchus keta originating from rivers along the Pacific coast of Japan migrate northwards to the Sea of Okhotsk, typically passing off Konbumori, near the easternmost part of Hokkaido Island. We used daily-increment analysis of otoliths to back-calculate the growth rates [mean daily growth rate in fork length (FL)] of 369 juveniles (56–146 mm FL) originating from various rivers southwest of Konbumori, and sampled at Konbumori between 2005 and 2014. We examined differences in growth rate in terms of differences in distance from the source of juveniles, their river or region of origin, to Konbumori, and FL at time of collection. The results show that juvenile chum salmon originating from distant sources tended to grow faster than those from more proximal sources, likely contributing to larger FLs in the former. Growth rates of larger fish (≥ 90 mm FL) differed little (medians: 0.64–0.68 mm/day) among regions of origin, whereas those of smaller fish tended to be low among fish originating from more proximal regions (20–126 km from Konbumori). These results suggest that fish migrating from more distant rivers were better able to survive and to reach Konbumori by achieving or exceeding a certain growth rate.  相似文献   

2.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

3.
We have reviewed the effects of long-term climatic/oceanic conditions on the growth, survival, production dynamics, and distribution of Hokkaido chum salmon Oncorhynchus keta in Japan during the period 1945–2005 using path analysis, back-calculation, and scale analyses, and applied a prediction method based on the SRES-A1B scenario of the intergovernmental panel on climate change. The populations of Hokkaido chum salmon were found to have had high growth rates at age 1 year since the late 1980s. Path analysis indicated that the growth at age 1 year in the Okhotsk Sea was directly affected by warm sea surface temperature associated with global warming, with the increased growth at age 1 year resulting in higher rates of survival and large population sizes. Predictions on the global warming effects on the chum salmon were (1) decreased carrying capacity and distribution area, (2) occurrence of a strong density-dependent effect, and (3) loss of migration route to the Sea of Okhotsk, especially for Hokkaido chum salmon. We have also outlined the future challenges of establishing a sustainable conservation management scheme for salmon that include adaptive management and precautionary principles, as well as conservation of natural spawning populations and recovery of natural river ecosystems in Japan despite the warming climate.  相似文献   

4.
Variation at 14 microsatellite loci was surveyed in 26 chum salmon Oncorhynchus keta populations from Japan, one population from West Kamchatka and three populations from North America to determine population structure. Microsatellites were then applied to estimate stock composition of chum salmon in mixed-stock fisheries. The genetic differentiation index (F st) over all populations and loci was 0.031, with individual locus values ranging from 0.010 to 0.081. Seven regional populations were observed in Japanese chum salmon, with late-run populations from the Pacific Coast of Honshu the most distinct. Japanese populations displayed greater genetic diversity than did those in North America. Transplantation history in some Japanese river populations influenced their present genetic characteristics. Analysis of simulated mixtures from fishery sampling suggested that accurate and precise regional estimates of stock composition should be produced when the microsatellites were used to estimate stock compositions. Stock compositions for a 2005 sample of maturing, migrating chum salmon off the north-west coast of Hokkaido near the border of the Sea of Japan and the Sea of Okhotsk indicated that this region may be a migration corridor for Hokkaido populations from the Sea of Japan coast. Microsatellites have the ability to provide fine-scale resolution of stock composition in Japanese coastal fisheries.  相似文献   

5.
More than 1,000 age-identified chum salmon Oncorhynchus keta collected at 23 stations in the Bering Sea and the North Pacific Ocean in June to July 2003 were used to estimate their origin of stocks using a DNA microarray developed for analyzing the mitochondrial (mt)DNA haplotypes. The observed haplotype distribution was nearly the same as that reported previously for fish collected in September 2002 and 2003 in the present surveyed areas. A conditional maximum-likelihood method for estimation of stock compositions indicated that the Japanese stocks mainly distributed in north central Bering Sea, whereas the Russian stocks were mainly in western Bering Sea. The North American stocks were abundant in eastern Bering Sea and around the Aleutian Islands. Such an area-specific stock composition was not significantly different between mature and immature fish. Thus, the combined results of 2 years suggest that the distribution of chum salmon is nonrandom in the surveyed areas in summer and autumn, and that fish of the same origin migrate together to the same area irrespective of age.  相似文献   

6.
Abstract –  A segment of the Shibetsu River was restored to reconstruct the ecological condition of the previously canalized river stretch to a more natural, meandering state. In this study, we investigated the upstream migration of chum salmon ( Oncorhynchus keta ) using radio transmitters to track the horizontal position of fish and data loggers to detect the vertical swimming depth of fish, simultaneously. The monitored salmon travelled near the bottom of the water column and along the riverbanks, and tended to hold in deep, slow current areas in the canalized river. In the restored segment, the fish swam at more shallow depths and against stronger currents. Although the three tracked fish all reached the confluent point and chose to enter the restored segment, they did not remain in the segment for long. This indicates that the restored area facilitates the upward migration of the chum salmon.  相似文献   

7.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

8.
Based on generalized linear models, interspecific interactions were identified between chum and pink salmon. In addition, the effects of sea surface temperature and location on the variability of catch per unit effort (CPUE) of chum salmon from gill‐net surveys carried out between 1972 and 2010 were investigated. In the optimal model, interspecific interactions between CPUEs of chum and pink salmon on a year scale were positive for approximately half of all years in the central Bering Sea. In addition, interspecific interactions on a multi‐year scale were positive in even‐numbered years. The effects of location on the CPUE of chum salmon were significant variables in the optimal model. The CPUEs of chum salmon located near the continental shelf in the Bering Sea were higher than those of other locations. This study provides new evidence of positive interspecific interactions between the CPUEs of chum and pink salmon. The results also suggest that the standardized CPUE of chum salmon from the gill‐net surveys reflects relative chum salmon abundance in the North Pacific Ocean in the following year.  相似文献   

9.
Plasma somatolactin (SL) concentrations were examined in chum salmon in relation to gonadal maturation; immature salmon in the Bering Sea at various stages of maturation, and mature salmon during upstream migration caught at the ocean, bay and river. Plasma SL concentrations as well as plasma prolactin (PRL) and growth hormone (GH) levels in the immature fish caught in the Bering Sea were maintained essentially at similar levels. Plasma SL in mature salmon increased significantly from the fish in the ocean to the fish in the river in both sexes. Although all the fish had fully developed gonads, females completed ovulation while still in the bay, whereas final spermeation in males was achieved after entry into the river. Thus, no clear correlation was seen between plasma SL levels and final gonadal maturation. On the other hand, plasma PRL concentrations in both male and female fish were higher in the fish in the river than those in the ocean and bay, and plasma GH levels were higher in both sexes in the fish in the bay and river than those in the ocean. Plasma levels of triglycerides, glucose, free fatty acids and ionized sodium and calcium were also examined. Significant-negative correlations were seen between plasma SL and plasma ionized calcium in mature male salmon, and between plasma SL and plasma triglycerides in mature female salmon. Although our findings do not rule out the possibility of the involvement of SL in final maturation, the results indicate that SL seems to be involved at least in energy and/or calcium metabolism during the spawning migration.  相似文献   

10.
The spawning migration travel times of chum salmon, Oncorhynchus keta (Walbaum), fitted with gastrically implanted radio tags vs external spaghetti tags were tested for a short [≈60 river km (rkm)] and long migration route (≈730 rkm) on the Koyukuk River, Alaska, USA. Using a novel application of statistical arrival curve models to infer travel times for uncaptured fish, migrations by chum salmon not directly handled during the study were also assessed. Results demonstrated negligible differences in travel times within migration routes between fish fitted only with spaghetti tags and fish fitted with radio tags, indicating low impacts on migration travel behaviour associated with gastric tags once deployed. Conversely, travel times for unhandled fish as inferred by statistical arrival models may have been 12%–24% shorter than those for fish captured with gillnets for tagging. These results suggest that, if present, chum salmon migration behaviour impacts may be more strongly associated with fish capture than tag deployment.  相似文献   

11.
Eight temperature-recording data storage tags were recovered from three salmonids in Alaska (pink and coho salmon and steelhead trout) and five chum salmon in Japan after 21–117 days, containing the first long-term records of ambient temperature from Pacific salmonids migrating at sea. Temperature data imply diel patterns of descents to deeper, cooler water and ascents to the surface. Fish were found at higher average temperatures at night, with narrower temperature ranges and fewer descents than during the day. Fish tagged in the Gulf of Alaska were at higher temperatures on average (10–12°C) than chum salmon tagged in the Bering Sea (8–10°C). Chum salmon were also found at a wider range of temperatures (−1–22°C vs 5–15°C). This is probably related both to the different oceanographic regions through which the fish migrated, as well as species differences in thermal range and vertical movements. Proportions of time that individual fish spent at different temperatures seemed to vary among oceanographic regions. Steelhead trout may descend to moderate depths (50 m) and not be limited to the top few metres, as had been believed. Japanese chum salmon may seek deep, cold waters as they encounter warm surface temperatures on their homeward migrations. Temperature data from all fish showed an initial period (4–21 days) of day and night temperatures near those of sea surface temperatures, suggesting a period of recuperation from tagging trauma. A period of tagging recuperation suggests that vertical movement data from short-term ultrasonic telemetry studies may not represent normal behaviour of fish. The considerable diurnal and shorter-term variation in ambient temperatures suggests that offshore ocean distribution may be linked more to prey distribution and foraging than to sea surface temperatures.  相似文献   

12.
This study reviews the present status of the Japanese chum salmon Oncorhynchus keta stock enhancement program and considers the ecological sustainability of wild populations while providing fishery production, exemplified by the hatchery-based Kitami region set net fishery. The return rate and the number of returns have been historically high in the Sea of Okhotsk, but have decreased in other regions since 2005. Natural spawning of chum salmon occurred in at least 160 rivers in Hokkaido. The genetic diversity of Japanese chum salmon was similar to or higher than that of other Pacific Rim populations. Numbers of alleles were high at microsatellite loci, but the loss of rare haplotypes was observed in all populations. The estimated N e /N ratio for the Kitami region was >0.15 % including hatchery and wild fish under the present high fishing pressure. Four regional populations were inferred in Hokkaido, however, genetic differentiation was weak and some river-populations were nested. Substantial changes in run timing were observed, but it has recovered gradually owing to the recent practice of escapement. Our analyses highlight the importance of juvenile quality and the vital roles of escapements in enhanced and non-enhanced rivers. New research is needed to minimize the genetic risks associated with hatchery programs.  相似文献   

13.
Upstream selective movement of chum salmon (Oncorhynchus keta), which were captured in the Osaru River, Hokkaido, Japan, in late spawning season, was investigated in a two-choice test tank consisted of two water inlet arms and one pool. Artificial home stream water that was prepared based on the compositions of amino acids and related substances of the Osaru River, and natural lake water flowed in each arm. Of 44 chum salmon tested, 28 fish showed upstream movement to one of the choice arm, and 24 fish (85.7%) of those moved fish were found in the arm running the artificial home stream water. When the artificial home stream water flowed from the left and right arms, 88.9% and 80% of fish were observed in the left and right arms, respectively. These results strongly support our hypothesis that amino acids dissolved in stream waters are home stream substances for salmon homing.  相似文献   

14.
The relationship between release date and migration speed was examined for hatchery chum salmon Oncorhynchus keta fry exiting the Nishibetsu River in eastern Hokkaido, northern Japan so that future releases might be scheduled so that fry arrive at the ocean during periods favoring high survival. Separate marked groups of chum salmon released in early April, mid-April, and early May in 2008, late March and mid-April in 2009, and mid-April in 2010 were recaptured with a rotary screw trap 12 km above the river mouth. Chum salmon in later release groups tended to migrate downstream faster than fish in earlier release groups. Those released after mid-April arrived in the lower river on average 9 days after release, while those released before mid-April arrived on average 26–28 days after release. Most marked fish arrived in the lower river during late April to mid-May. These results suggest that chum salmon are adapted to adjust their migratory speed so as to arrive at the ocean during a relatively discrete period, presumably during a time of high productivity favoring good survival.  相似文献   

15.
Relationships between the vertical distribution and thermal habitat, and body size of chum salmon Oncorhynchus keta were studied in the Bering Sea in summer using trawl surveys at various depths. Chum salmon abundance decreased with increasing depth, but the patterns of decrease differed between size groups. The abundance of small salmon fell rapidly with depth, whereas that of large salmon decreased gradually to 40 m depth, and abruptly below that. The average fork length of chum salmon collected from each trawl correlated positively with trawl net depth and negatively with water temperature. Since the optimal temperature for growth decreases with body size in this species, the observed body size‐related vertical habitat use by chum salmon may indicate size‐dependent thermal preferences.  相似文献   

16.

Offshore migration of Pacific salmon Oncorhynchus spp. is partly triggered by increasing body size and high motility in the early stages of life. The survival of juvenile salmon may depend on their growth rate during the first few months in the sea, and this factor partly regulates the dynamics of adult populations. Here, we assessed the effects of water temperature and food availability on the growth of juvenile chum salmon O. keta. In addition, by combining the measurements of metabolic performance for growth and activity (Absolute Aerobic Scope: AAS) with a bioenergetics model, we estimated the energy allocation for different activities in the juveniles. Under high temperatures (14 °C), juveniles reared at low food levels (1% body weight) allocated less than half their energy for growth than those reared at high food levels (4% body weight). These findings suggest that high temperature and low food level constrain the growth of juveniles, providing an insight into the effect of the recent increase in warm and low-nutrient water masses on survival of juveniles and catches of adult chum salmon on the Pacific side of Honshu Island, Japan.

  相似文献   

17.
The body size of juvenile fish is often used as an index of growth rate, which in turn is influenced by local habitat conditions. We evaluated the size and origin of juvenile Chum salmon Oncorhynchus keta in the coastal areas of three regions (Atsuta, Shari, and Konbumori) of Hokkaido, northern Japan. The origin of the individuals in these communities differed between Konbumori and the other two regions. The former contained juveniles that originated from both the nearest stocked river and other rivers that were outside the area of interest. Conversely, the communities in Atsuta and Shari consisted exclusively of fish from the nearest stocked river. Moreover, the juveniles in Konbumori were larger than those in Atsuta and Shari. The results of our otolith analysis suggest that the larger size of the fish in Konbumori was due to the immigration of large individuals from natal rivers at distant locations. Thus, immigrants were likely to enlarge their body size composition in the area of interest. In summary, if the distance from a natal river is adjusted and daily growth is taken into account, body size can be used as an indicator of growth performance in coastal juvenile chum salmon.  相似文献   

18.
Information on the status of natural spawning is needed on the Japan Sea side of northern Honshu, Japan for ecosystem-based sustainable management of chum salmon resources. We conducted on-site visual surveys in October–December of 2015 and 2016 that targeted spawning chum salmon redds in all rivers?>?5 km long (total 94 rivers) in Akita, Yamagata, Niigata (including Sado Island), and Toyama prefectures. The ratio of rivers found to host natural reproduction to the total number of surveyed rivers was 93.6% (44/47) in stocked rivers and 74.5% (35/47) in non-stocked rivers. These results show that there is a wide occurrence of natural reproduction of chum salmon in these rivers, regardless of the history of hatchery stocking. The density of spawning redds (number of redds/1000 m2) as an indicator of chum salmon escapements did not differ (P?=?0.54) between stocked rivers (mean 3.5, N ?=?49) and non-stocked rivers (mean 2.4, N? =?36),when rivers where no redds were observed were excluded from the analysis. These results suggest that chum salmon escapements into non-stocked rivers may not be negligible. Conservation measures for wild fish are needed in stocked and non-stocked rivers to promote enhancement programs based on natural reproduction.  相似文献   

19.
Interannual variations in abundance, timing of outmigration from rivers, growth rate and condition of juvenile chum salmon (Oncorhynchus keta) were studied in the Nemuro Strait (eastern Hokkaido, Japan) during 1999–2002 to establish a possible relationship to zooplankton abundance. The otolith microstructure of juveniles was examined each year in late June to determine their time and size at sea entry (i.e., outmigration), and to estimate the early marine growth rates. Salmon outmigration peaked in mid- or late May, which coincided, in three of the four study years, with the peak release of juveniles into rivers within the study area. Abundance, growth rate and condition of fish were higher in 2001, when—compared to other years—smaller fish experienced higher growth rates, coinciding with greater zooplankton abundance for that year. Our results suggest that high zooplankton abundance positively influenced juvenile chum salmon growth and the condition of the fish during their early marine life despite their small size at sea entry.  相似文献   

20.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号