首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract –  A segment of the Shibetsu River was restored to reconstruct the ecological condition of the previously canalized river stretch to a more natural, meandering state. In this study, we investigated the upstream migration of chum salmon ( Oncorhynchus keta ) using radio transmitters to track the horizontal position of fish and data loggers to detect the vertical swimming depth of fish, simultaneously. The monitored salmon travelled near the bottom of the water column and along the riverbanks, and tended to hold in deep, slow current areas in the canalized river. In the restored segment, the fish swam at more shallow depths and against stronger currents. Although the three tracked fish all reached the confluent point and chose to enter the restored segment, they did not remain in the segment for long. This indicates that the restored area facilitates the upward migration of the chum salmon.  相似文献   

2.
Chinook salmon, Oncorhynchus tshawytscha (Walbaum), is an important biological and cultural resource in Alaska, but knowledge about Chinook salmon ecology is limited in many regions. From 2009 to 2012, spawning distribution and abundance of a northern Chinook salmon population on the Togiak River in south‐west Alaska were assessed. Chinook salmon preferred deeper mainstem channel spawning habitat, with 12% (14 of 118 tags in 2009) to 21% (22 of 106 tags in 2012) of radio‐tagged fish spawning in smaller order tributaries. Tributary spawners tended to have earlier run timing than mainstem spawners. Chinook salmon exhibited extended holding and backout (entering freshwater but returning to saltwater before completing anadromous migration) behaviours near the mouth of Togiak River, potentially prolonging their exposure to fishery harvest. Mark–recapture total annual run estimates (2010–2012) ranged from 11 240 (2011) to 18 299 (2012) fish. Exploitation of Chinook salmon ranged from 36% (2012) to 55% (2011) during the study period, with incidental fishery catches near the mouth of the river comprising the largest source of harvest.  相似文献   

3.
Eight temperature-recording data storage tags were recovered from three salmonids in Alaska (pink and coho salmon and steelhead trout) and five chum salmon in Japan after 21–117 days, containing the first long-term records of ambient temperature from Pacific salmonids migrating at sea. Temperature data imply diel patterns of descents to deeper, cooler water and ascents to the surface. Fish were found at higher average temperatures at night, with narrower temperature ranges and fewer descents than during the day. Fish tagged in the Gulf of Alaska were at higher temperatures on average (10–12°C) than chum salmon tagged in the Bering Sea (8–10°C). Chum salmon were also found at a wider range of temperatures (−1–22°C vs 5–15°C). This is probably related both to the different oceanographic regions through which the fish migrated, as well as species differences in thermal range and vertical movements. Proportions of time that individual fish spent at different temperatures seemed to vary among oceanographic regions. Steelhead trout may descend to moderate depths (50 m) and not be limited to the top few metres, as had been believed. Japanese chum salmon may seek deep, cold waters as they encounter warm surface temperatures on their homeward migrations. Temperature data from all fish showed an initial period (4–21 days) of day and night temperatures near those of sea surface temperatures, suggesting a period of recuperation from tagging trauma. A period of tagging recuperation suggests that vertical movement data from short-term ultrasonic telemetry studies may not represent normal behaviour of fish. The considerable diurnal and shorter-term variation in ambient temperatures suggests that offshore ocean distribution may be linked more to prey distribution and foraging than to sea surface temperatures.  相似文献   

4.
Using a salmon migration model based on the assumption that swimming orientation is temperature dependent, we investigated the determining factors of the migration of juvenile and immature chum salmon (Oncorhynchus keta) in the North Pacific. We compared the predictions of the model with catch data of immature and juvenile chum salmon collected by Japanese research vessels from 1972 to 1999. The salmon migration model reproduced the observed distributions of immature chum salmon and indicates that passive transport by wind‐driven and geostrophic currents plays an important role in the eastward migration of Asian salmon. These factors result in a non‐symmetric distribution of Asian and North American chum salmon in the open ocean. The directional swimming component contributes to the northward migration in summer. The model results indicate that during the first winter Asian chum salmon swim northward against the southward wind‐driven currents to stay in the western North Pacific. This suggests that Asian chum salmon require more energy to migrate than other stocks during the first winter of their ocean life.  相似文献   

5.
The migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during after spawning in the River Namsen, Norway, was analysed using radio telemetry. The fish were caught, radio tagged and released into the fjord between 7 and 25 km from the river mouth. A significantly higher proportion of wild (74%) than farmed (43%) salmon was subsequently recorded in the river. Wild salmon (33%) were more frequently captured in the sea and in rivers than farmed salmon (14%). The migration speed from release to passing a data logger 11 km upstream from the river mouth was not significantly different between wild (20.6 km day?1) and farmed (19.8 km day?1) salmon. Wild salmon tagged when water flow in the river was increasing had a significantly higher migration speed than wild salmon tagged when water flow was decreasing. This was not true for farmed salmon. Farmed salmon were distributed significantly higher up the river than wild salmon during spawning, although both types of fish were found together in spawning areas. Thus, there was no geographical isolation to prevent spawning between wild and escaped farmed salmon. Farmed salmon had significantly more and longer up- and downstream movements than wild salmon during the spawning period. Unlike farmed salmon, the number of riverine movements by wild salmon increased significantly when variation in water flow increased. A smaller proportion of wild (9%) than farmed (77%) salmon survived through the winter after spawning.  相似文献   

6.
Vertical movement patterns of five chum salmon (Oncorhynchus keta) during homing migration were examined using archival tags. The standard deviation of the depth and ambient and body cavity temperatures during daytime were larger than those during night‐time. Vertical movements through the thermocline with a periodicity of less than 1 h were observed during daytime in addition to the diel vertical movement patterns in the open ocean. During these periods of frequent short‐term vertical movements, the difference between the body cavity temperature and ambient temperature was large while the variance of the body cavity temperature was less than that of the ambient temperature. From the results of a random simulation, the variation of the body cavity temperature was shown to decrease due to these periodic high frequency movements in comparison with random vertical movements. The whole‐body heat‐transfer coefficient k (s?1), which was estimated by a heat budget model, was 1.48 × 10?3. The k of chum salmon was larger than that of bigeye tuna (Thunnus obesus) by about one order of magnitude for the cooling of the body. The k of chum salmon did not change like tuna, which are physiologically adapted to conserve body cavity temperature. This indicates that the regulation of body cavity temperature by chum salmon is dependent on the vertical movements only. The maintenance of the body cavity temperature is concluded to be advantageous for their maturation and growth from the relationship between energy input and output during their homing migration.  相似文献   

7.
Telemetry tags are increasingly used in management to monitor the migration timing of Atlantic salmon smolts (Salmo salar L.). It has been postulated that (1) effects from tagging and handling may alter migration behaviour, and (2) that the selection of fish during sampling is not representative of all migrating smolts, yielding bias in migration timing estimates. In the River Dale (Vestland, Norway), five groups of wild Atlantic salmon smolts (N = 385) were tagged in April–May and recaptured in a wolf trap. Migration timing was then compared to the untagged population. Migration timing differed between tagged (12 mm PIT) and untagged fish for 4/5 groups. Only fish tagged at the first time point did not have significantly different timing of migration from untagged counterparts. The relationship between length and the timing of migration was different for initial length and length at recapture; initial length suggested earlier migration of longer fish, but the extra time spent in the river prior to migrating for smolts that were initially smaller compensated for the size difference. The tagging protocol is crucial to obtaining representative migration timing results. Smolts should be tagged as early as possible and include the entire size distribution.  相似文献   

8.
Thermal habitat was recorded by data storage tags (DSTs) applied to Atlantic salmon (Salmo salar L.) kelts during their seaward migration in the spring of 1998 at enumeration facilities in Highlands River, Humber River, Western Arm Brook, and Campbellton River, Newfoundland. In total, 139 DSTs were applied and data were downloaded from eleven of the recovered tags. The recovered tags had been applied at Highlands, Campbellton and Western Arm rivers and recovered in the coastal waters of Newfoundland and Québec and at the enumeration facilities at Highlands and Campbellton rivers. Water temperatures experienced by the fish were recorded for periods of 62–118 days at resolutions of 15–30 min. The data from the sea record on the DSTs were analysed for temperature patterns in relation to migration behaviour and diurnal movement of the fish. A variety of patterns were exhibited on the temperature records suggesting that the fish were behaving in various ways at different times. For Campbellton and Highlands fish over the course of some 24 h periods, night‐time temperatures changed little and were among the highest daily temperatures experienced by the fish, whereas daytime temperatures often showed dramatic and frequent shifts in temperature presumably as the fish rapidly and frequently changed depth. For the Western Arm Brook fish, rapid fluctuations in temperature occurred sometimes during the day and night without a consistent diurnal pattern. We also considered large‐scale aspects of the data by examining oceanographic conditions in relation to the temperatures recorded by the tags.  相似文献   

9.
ABSTRACT:   In order to investigate the changes in rhodopsin-porphyropsin ratio of chum salmon and pink salmon in relation to the change in their habitat, the ratios were analyzed in individual fish prior to stocking, during the sea run, homing, and upstream migration. The ratio in both the species gradually increased during the sea run. However, the ratio decreased after upstream river migration. Moreover, in the sea, the rhodopsin-porphyropsin ratio of chum salmon was always slightly higher than that of pink salmon. The largest difference in the individual variation was observed in the individuals caught with a set net placed near the mouth of a home river.  相似文献   

10.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

11.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

12.
This study investigated the cumulative impact of weirs on the downstream migration of wild Atlantic salmon (Salmo salar) smolts in the River Foyle, Northern Ireland. In spring of 2013 fish were released in two tributaries of similar length; one tributary (impacted) had seven low‐head weirs along the migration pathway and the other was devoid of such structures (un‐impacted). Salmon smolts fitted with acoustic transmitters were monitored via a passive acoustic telemetry array during downstream migration. In 2014 the study was repeated only in the impacted tributary. Overall freshwater survival rates were high (>94%). There was no significant difference in mortality, movement pattern, delay or travel speeds between rivers or between years at any phase of migration. Escapement of salmon smolts through Lough Foyle (a marine sea lough) to the open ocean was low, approximately 18% in each year. Escapement did not differ between impacted and un‐impacted rivers. This study showed no postpassage effects of weirs on mortality, migration speed or escapement of downstream migrating smolts. This suggests that the elevated mortality at low‐head obstacles described in other studies is not inevitable in all river systems. Migration through rivers with natural riffle‐pool migration may result in similar effects as those from low‐head weirs. Causes of apparent high mortality in the early part of marine migration in this study, are unknown; however similar studies have highlighted the impact of fish predators on smolts.  相似文献   

13.
To apply otolith microstructure to examination of age and growth of juvenile chum salmon Oncorhynchus keta inhabiting coastal waters, formation of otolith increments was investigated for juveniles reared in a seawater aquarium and in net pens. In all otoliths examined, a distinctive check was formed at the time of sea entry of the fish. The deposition of otolith increments after the check was daily for rearing both in the aquarium (57 days) and in the net pens (26 days). Check formation associated with sea entry was also observed in otoliths of juvenile salmon collected 1 km off the coast of Shari, Hokkaido, Japan. Transmitted light observation of otoliths of those fish revealed a transition in otolith increment appearance from dark to light. Otolith Sr: Ca ratio remarkably changed from a low to a high level, coinciding with the transition in otolith appearance. It is suggested that the transition was associated with individual sea entry. This study demonstrated that the check and/or transition associated with sea entry are applicable to a benchmark for otolith increment counts of juvenile chum salmon inhabiting coastal waters.  相似文献   

14.
The relationship between release date and migration speed was examined for hatchery chum salmon Oncorhynchus keta fry exiting the Nishibetsu River in eastern Hokkaido, northern Japan so that future releases might be scheduled so that fry arrive at the ocean during periods favoring high survival. Separate marked groups of chum salmon released in early April, mid-April, and early May in 2008, late March and mid-April in 2009, and mid-April in 2010 were recaptured with a rotary screw trap 12 km above the river mouth. Chum salmon in later release groups tended to migrate downstream faster than fish in earlier release groups. Those released after mid-April arrived in the lower river on average 9 days after release, while those released before mid-April arrived on average 26–28 days after release. Most marked fish arrived in the lower river during late April to mid-May. These results suggest that chum salmon are adapted to adjust their migratory speed so as to arrive at the ocean during a relatively discrete period, presumably during a time of high productivity favoring good survival.  相似文献   

15.
Keefer ML, Taylor GA, Garletts DF, Gauthier GA, Pierce TM, Caudill CC. Prespawn mortality in adult spring Chinook salmon outplanted above barrier dams.
Ecology of Freshwater Fish 2010: 19: 361–372. © 2010 John Wiley & Sons A/S Abstract – Dams without fish passage facilities block access to much of the historic spawning habitat of spring Chinook salmon (Oncorhynchus tshawytscha) in Oregon’s Willamette River basin. Adult salmon are routinely outplanted above the dams to supplement natural production, but many die before spawning despite extensive suitable habitat. In 2004–2007, we examined prespawn mortality patterns using live detection and carcass recovery data for 242 radio‐tagged outplants. Total prespawn mortality was 48%, but variability was high, ranging from 0% to 93% for individual release groups. Prespawn mortality was strongly condition dependent, consistently higher for females than males and higher for early release groups. Across years, warm water temperature in the migration corridor and at the collection site was associated with sharply higher mortality. Results highlight a need for better evaluations of the effects of adult mortality on population reintroduction and recovery and relationships among prespawn mortality, dam‐related temperature change and salmon life history and behaviour.  相似文献   

16.
Immunocytochemical techniques using an antiserum to cod somatolactin (SL) demonstrated the presence of SL cells in the intermediate lobe of the pituitary in Oncorhynchus tshawytscha. The cells were small in yearling fish. Two groups of maturing fish were studied. In the spring run salmon collected in April and May during the upstream migration, the SL cells appeared stimulated. In September, during spawning, SL cell stimulation was maximal with indices of hypertrophy and degranulation often more marked in females than in males. In the other group, salmon of the fall run collected in the Pacific Ocean in August had well developed gonads, large gonadotropes and abundant SL cells. In spawning salmon (September) the SL cells were stimulated, mainly in females. However, the final stimulation was less intense than in spring run spawning fish. The SL cells were smaller, without evident granule release, but still abundant in spent salmon of the fall run caught at the end of November. Various factors (time spent in rivers before spawning, starvation, decalcification, stress, hypothalamic influences) were considered which might explain differences between spring and fall run salmon. These observations suggest that SL may play a role in the control of gonadal maturation in chinook salmon as it may also do in sockeye and chum salmon previously studied, and that SL cells may be sensitive to the ambient salinity.  相似文献   

17.
Variation at 14 microsatellite loci was surveyed in 26 chum salmon Oncorhynchus keta populations from Japan, one population from West Kamchatka and three populations from North America to determine population structure. Microsatellites were then applied to estimate stock composition of chum salmon in mixed-stock fisheries. The genetic differentiation index (F st) over all populations and loci was 0.031, with individual locus values ranging from 0.010 to 0.081. Seven regional populations were observed in Japanese chum salmon, with late-run populations from the Pacific Coast of Honshu the most distinct. Japanese populations displayed greater genetic diversity than did those in North America. Transplantation history in some Japanese river populations influenced their present genetic characteristics. Analysis of simulated mixtures from fishery sampling suggested that accurate and precise regional estimates of stock composition should be produced when the microsatellites were used to estimate stock compositions. Stock compositions for a 2005 sample of maturing, migrating chum salmon off the north-west coast of Hokkaido near the border of the Sea of Japan and the Sea of Okhotsk indicated that this region may be a migration corridor for Hokkaido populations from the Sea of Japan coast. Microsatellites have the ability to provide fine-scale resolution of stock composition in Japanese coastal fisheries.  相似文献   

18.
The Atlantic salmon (Salmo salar) population of the River Minho represents the southern natural distribution edge of the species. In line with the general trend for Atlantic salmon, this population has been declining over the years and is now at a critically low level. With river connectivity compromised by a large dam just 80 km upstream the River Minho's outlet, and an expected deterioration of climatic conditions, it is urgent to increase our knowledge of this population and identify survival bottlenecks that can be addressed. In this study, we used radio and acoustic telemetry to track Atlantic salmon smolts during their migration towards the sea and record both survival rates and possible causes of mortality. The recorded survival for the tagged migrating Atlantic salmon remained below 55% in the three studied years, indicating that the in‐river loss of smolts is likely a strong constraint to this population. From the smolts to which a likely cause of mortality could be attributed (34%), most appear to have been removed from the river (25%), with two confirmed events of bird predation and one of mammal predation. Interestingly, eight tags were recorded moving back upstream, likely indicating predation by larger fish. Increasing predator populations (e.g. cormorants, Phalacrocorax carbo) and invasive predators (e.g. American mink, Neovison vison) lead to elevated predation pressure on this already strained Atlantic salmon population, and further studies quantifying their impact in more detail could prove crucial for future management considerations.  相似文献   

19.
The effects of four different tagging methods (PIT, anchor T‐tag, Carlin tag and dummy radio transmitter) on survival, behaviour and growth of Atlantic salmon smolts during their downstream migration were examined in semi‐natural circular channels during a natural migration period in spring. Survival of smolts was high and tagging wounds healed well in all tagging groups. Tag loss rates were generally low, being the highest (2.5%) in the dummy radio transmitter group. Total length and body mass of the tagged and untagged smolts did not differ at the end of the experiment. Migration activity of smolts generally showed similar patterns among the treatments. However, Carlin‐tagged smolts started their migration slightly later than the PIT‐tagged fish, and smolts tagged with Carlin tag or dummy radio transmitter showed less overall migration activity than fish with PIT tag.  相似文献   

20.
The reproductive migration of anadromous salmonids through estuarine waters is one of the most challenging stages of their life cycle, yet little is known about the environmental and physiological conditions that influence migratory behaviour. We captured, sampled tissues, tagged and released 365 sockeye salmon (Oncorhynchus nerka) homing through inner coastal waters towards the Fraser River, British Columbia, Canada. Biotelemetry was used to assess the behaviour of individual sockeye salmon approaching estuarine waters and at river entry, which were related to both fish physiological condition at release and to prevailing environmental conditions. Sockeye salmon tended to stay close to the shore, migrated during the day, and movements were related to tide. Sockeye salmon migration rate was linked to wind‐induced currents, salinity and an individual's physiological state, but these factors were specific to location and stock. We propose that wind‐induced currents exposed sockeye salmon entering the estuary to stronger olfactory cues associated with Fraser River water, which in turn resulted in faster migration rates presumably due to either an increased ability for olfactory navigation and/or advanced reproductive schedule through a neuroendocrine response to olfactory cues. However, once the migration had progressed further into more concentrated freshwater of the river plume, sockeye salmon presumably used wind‐induced currents to aid in movements towards the river, which may be associated with energy conservation. Results from this study improve our biological understanding of the movements of Fraser River sockeye salmon and are also broadly relevant to other anadromous salmonids homing in marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号