首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting the risk of weed infestation in winter oilseed rape crops   总被引:1,自引:0,他引:1  
Chemical weed control before crop and weed emergence is a systematic practice in winter oilseed rape crops in France. It would be profitable both for farmers and the environment to predict the level of weed infestation early on in the growing season and to control weeds only when necessary using post‐emergence weed control. The objective of this paper was to develop and evaluate simple models to predict weed biomass in oilseed rape crops. The model input variables were related to weed population characteristics and farmers’ practices. The models can be used to classify oilseed rape plots into two categories: plots with a level of weed infestation above a threshold or those with level of weed infestation below a threshold. A data set including 3 years of experiments, conducted across several regions in France, was used to estimate the parameters and to evaluate the models. High values of sensitivity and specificity were obtained when weed biomass was predicted as a function of sowing date, type of soil tillage, soil mineral nitrogen, crop density, weed density at emergence, and main characteristics of the most abundant weed species. Model performance strongly decreased when input variables related to the weed population were not taken into account. The best models correctly classified 90% of the plots with high weed infestation and 64% of the plots with low weed infestation.  相似文献   

2.
G Fried  B Chauvel  X Reboud 《Weed Research》2015,55(5):514-524
Temporally repeated data sets can provide useful information about the management practices governing changes in the arable weed flora. This study aimed (i) to investigate changes in the most common weed species in winter oilseed rape crops in France between the 1970s and the 2000s and (ii) to pinpoint the main plant biological traits and associated management practices underlying the development of a specific weed flora in this crop. We compared two large‐scale surveys covering France in the 1970s and the 2000s, the later survey including several floristic samplings, on two dates, and both herbicide‐free control and treated plots. This last survey aimed to identify the species best able to maintain high densities over a growing season of oilseed rape. Since the 1970s, the frequency of two‐thirds (69%) of the 26 most common species has changed, spectacularly in some cases, with several species once considered rare becoming very common (e.g. Geranium dissectum) and, conversely, some formerly common species becoming rarer (e.g. Stellaria media). Our results indicated a general strong increase in specialist weeds of oilseed rape. Weed species success was favoured by tolerance to oilseed rape herbicides and germination synchronous with the crop. The proportion of specialist oilseed rape weed species tended to increase with herbicide treatment intensity and to decrease with increases in the proportion of spring‐sown crops in the rotation. Changes to the rotation may therefore constitute an additional or alternative means of controlling some weeds well adapted to oilseed rape crops.  相似文献   

3.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

4.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

5.
The rapid adoption of genetically engineered herbicide‐resistant crop varieties (HRCVs)—encompassing 83% of all GM crops and nearly 8% of the worldwide arable area—is due to technical efficiency and higher returns. Other herbicide‐resistant varieties obtained from genetic resources and mutagenesis have also been successfully released. Although the benefit for weed control is the main criteria for choosing HRCVs, the pleiotropic costs of genes endowing resistance have rarely been investigated in crops. Here the available data of comparisons between isogenic resistant and susceptible varieties are reviewed. Pleiotropic harmful effects on yield are reported in half of the cases, mostly with resistance mechanisms that originate from genetic resources and mutagenesis (atrazine in oilseed rape and millet, trifluralin in millet, imazamox in cotton) rather than genetic engineering (chlorsulfuron and glufosinate in some oilseed rape varieties, glyphosate in soybean). No effect was found for sethoxydim and bromoxynil resistance. Variable minor effects were found for imazamox, chlorsulfuron, glufosinate and glyphosate resistance. The importance of the breeding plan and the genetic background on the emergence of these effects is pointed out. Breeders' efforts to produce better varieties could compensate for the yield loss, which eliminates any possibility of formulating generic conclusions on pleiotropic effects that can be applied to all resistant crops. © 2013 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Herbicide‐resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide‐resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. RESULTS: Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate‐resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone‐resistant host. The growth of C. campestris on glyphosate‐resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3–4 weeks. CONCLUSION: The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite‐resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. Published 2009 by John Wiley & Sons, Ltd.  相似文献   

7.
Milberg  Hallgren  & Palmer 《Weed Research》2000,40(3):311-321
Data were analysed on weed biomass from untreated plots in 2672 field experiments conducted in spring- and autumn-sown cereal and oilseed crops in Sweden 1972–1992. The coefficient of variation (CV) among years in the biomass of annual weeds per square metre was 29% in autumn-sown crops. In spring-sown crops, which had less weed biomass, the corresponding value was 49%. The biomass of summer annuals varied most (105%). Low winter temperatures seemed to increase the biomass of weeds in autumn-sown crops. In spring-sown crops, weed biomass production was higher in years with high rainfall during late spring. Partial ordination (pCCA) of weed data indicated that the interannual variations in autumn-sown crops were mainly manifested by the occurrence of summer annuals. Results from similar ordination of data from spring-sown crops were partly explained by the occurrence of winter annuals.  相似文献   

8.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

9.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

10.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
The potential impact of herbicide-tolerant winter oilseed rape ( Brassica napus L.) on future herbicide use was investigated with a simulation model. The model uses a sigmoid function to simulate the growth of crops and weeds that compete for a maximum yield potential. Thresholds for weed control are based upon critical levels of weed biomass. The dynamics of the weed population are determined by the efficacy of representative herbicides on individual weed species and by seedbank parameters. Herbicide efficacy is determined by a log-logistic dose–response curve for each species. Simulation of a rotation with winter oilseed rape/wheat/wheat/barley showed contradictory predictions of herbicide use, because herbicide use in a rotation with either glyphosate- or glufosinate-tolerant oilseed rape was not reduced in the amount of kg a.i. ha–1 compared with a traditional treatment, whereas the treatment frequency (number of standard recommended doses per unit area) decreased.  相似文献   

12.
Crop rotation is the oldest, and perhaps the best cultural practice for reducing the risk of take-all. The effects of crops sown before wheat in a rotation are known in detail, but we know little about the opportunities for reducing take-all risk by planting certain crops in the summer period between wheat harvest and the planting of a subsequent winter wheat crop. We investigated the effects on take-all of five summer fallow crops, two soil tillage treatments and a fungicide seed treatment, in a five site-year experiment. We tested the effects of oats, oilseed rape, mustard, ryegrass and volunteer wheat crops. Bare-soil plots were also included. Take-all epidemics varied with year and site. Summer fallow crops had a greater effect on tilled plots. The incidence and severity of take-all were significantly higher in the wheat volunteer plots, whereas maintaining bare soil provided the lowest level of disease. Oilseed rape had no significant effect on take-all incidence in our experiment. The best candidates for reducing take-all risk appeared to be oats, mustard and ryegrass. These summer fallow crops decreased disease levels only when associated with conventional tillage. Summer fallow crops did not alter take-all decline in the same way as a break crop after a wheat monoculture.  相似文献   

13.
Journal of Plant Diseases and Protection - Data on weed species currently found in winter oilseed rape, the extent of their occurrence and regional distinctions were collected in autumn 2005, 2006...  相似文献   

14.
Use of reduced and no-tillage systems has increased in recent years due to concerns for ecological and economic sustainability of agricultural production. Effective weed control is a serious concern in reduced tillage production. This study was conducted to investigate weed control practices in reduced and no-till maize production. The most effective timing of glyphosate application, either before or after sowing, was investigated in combination with pre-emergence application of acetochlor (840 g a.i/L), post-emergence application of foramsulfuron (22.5 g a.i/L), and two hoeing treatments. The treatments were maintained on the same plots during 2011 and 2012 to evaluate the cumulative effects of the treatments. Main plot treatments consisted of four timings of glyphosate application: 20 or 10 days before sowing, day of sowing, 5 days after sowing, and an untreated control. Sub-plot treatments were: pre- plus post-emergence herbicides, pre-emergence herbicide plus rotary hoeing, post-emergence herbicide plus rotary hoeing, and post-emergence herbicide plus two hoeing treatments (rotary and lister hoe). In the main plots, the lowest weed biomass was produced in glyphosate treatments at sowing and 5 days after sowing; the highest biomass was produced in control plots and in the plots with glyphosate treatments 20 days before sowing. In the sub-plots, the greatest weed biomass was produced in plots with two hoeing treatments (rotary and lister hoe). Glyphosate treatments at sowing and post-emergence herbicide treatment combinations produced the best weed control. Economic analysis revealed that pre-sowing, non-selective herbicide treatments provided a slight increase in net profit. Mechanical hoeing decreased net income due to increased production costs. The highest income was obtained from the pre-emergence plus post-emergence herbicide treatment combinations with no glyphosate.  相似文献   

15.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Primarily, spatial information allows a potential reduction in herbicide use, when post‐emergent herbicides are only applied to field sections with high weed infestation levels. This paper presents a system for site‐specific weed control in sugar beet, maize, winter wheat, winter barley, winter rape and spring barley. The system includes on‐line weed detection using digital image analysis, computer‐based decision making and Global Positioning System‐controlled patch spraying. In a 2‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 6–81% for herbicides against broad leaved weeds and 20–79% for grass weed herbicides. Highest savings were achieved in cereals followed by sugar beet, maize and winter rape. The efficacy of weed control varied from 85% to 98%, indicating that site‐specific weed management will not result in higher infestation levels in the following crops.  相似文献   

16.
R H LI    & S QIANG 《Weed Research》2009,49(4):417-427
The diversity and composition of floating weed seed communities were surveyed in 27 sites across the main rice-growing regions in China with the aim of better understanding weed seed dispersal via irrigation water. Seed of 74 species, belonging to 20 families, were identified from floating matter on the water surface in lowland rice fields. Thirty-five species from three families: Poaceae (15), Asteraceae (11), and Polygonaceae (9), accounted for 47% of all species identified. Species with seed maturing in the summer accounted for 64% of the weed seed and their mean relative abundance was 0.74. Species richness, Shannon–Wiener index and Pielou evenness index were significantly different among the floating weed seed communities. The diversity of weed seed communities in the Yangtze river valley was higher than that in other sites, and some sites were dominated by only a few weed species, such as Beckmannia syzigachne , Alopecurus aequalis , A. japonicus , and Polypogon fugax. At all sites, the dominant weed seeds reflected the dominant weed species in the previous crop. The 27 sample sites of weed seed communities can be clustered into two groups on the basis of previous crop, either lowland rice or sites with previous crops of winter fallow, winter wheat or oilseed rape. Canonical correspondence analysis (CCA) revealed that irrigation frequency, previous crop, and latitude, but not soil type or longitude, significantly affected species composition. The numbers of floating weed seed species were high in lowland rice fields; composition was affected by previous crops and irrigation frequency. Filtering irrigation water and collecting and removing floating weed seeds from the water surface could be integrated into weed management practices to control weeds in lowland rice fields.  相似文献   

17.
Understanding the effects of interspecific competition on long‐term growth of plantation forestry crops is critical to forest management decisions around methods used for weed control. A series of permanent sample plots (31) incorporating trees maintained either weedy or weed‐free until canopy closure were established across New Zealand between 2000 and 2002. We used the age shift method to characterise growth responses of Pinus radiata, in New Zealand, to interspecific competition over the first third of a typical rotation. Eight years after planting, age shifts between treatments ranged between ?0.60 years and +3.07 years. On average, the age shift due to weed control increased from 0.62 to 0.96 years between 4 and 8 years of age. This was due to divergent tree growth between weedy and weed‐free plots at 55% of the sites, while at 32% and 13% of sites, respectively, differences between treatments remained constant or decreased beyond age 4 years. The magnitude of the age shift was found to be related to the type of weed dominating early interspecific competition, with woody weeds associated with significantly greater age shifts. Continued divergence in tree growth between weedy and weed‐free treatments up to 8 years after planting at the majority of sites was an unexpected result and contrasts with previous literature. In situations where growth divergence continues beyond 2 years, managers should consider continued treatment of weeds to mitigate the detrimental impacts of on‐going competition.  相似文献   

18.
In 2002, the Malaysian government had banned the use of the hazardous herbicide, paraquat. Most growers perceive that paraquat is the most effective herbicide and provides the fastest mode of action to control weeds. An experiment was conducted at MAB Agriculture-Horticulture, Sepang, Selangor, Malaysia, from February 2004 to February 2005 to evaluate the efficacy and ability of the less hazardous herbicides, glufosinate ammonium and glyphosate, as an alternative to the hazardous herbicide, paraquat, in controlling weeds in immature oil palm (<3 years old). The results showed that paraquat needed high rates, 600 and 800 g ha−1, to control weeds effectively. However, lower rates of glufosinate ammonium (200 g ha−1) and glyphosate (400 g ha−1) gave excellent weed control. The results showed that the efficacy of glufosinate ammonium and glyphosate were much better than paraquat. The results also showed that, with no direct contact with the plants, paraquat, glufosinate ammonium, and glyphosate had no adverse effect on the vegetative and generative growth of oil palm in this study. These results proved that the less hazardous herbicides, glufosinate ammonium and glyphosate, could be used as an alternative to paraquat to control weeds in immature oil palm.  相似文献   

19.
The aim of the present study was to determine whether post-emergence application of glufosinate to transgenic crops could lead to an increase in residues or to the formation of new, hitherto unknown metabolites. Transgenic oilseed rape and maize plants were treated separately with L-glufosinate, D-glufosinate or the racemic mixture. Whereas about 90% of the applied D-glufosinate was washed off by rain and only 5-6% was metabolised, 13-35% of the applied L-glufosinate remained in the form of metabolites and unchanged herbicide in both transgenic maize and oilseed rape. The main metabolite was N-acetyl-L-glufosinate with total residues of 91% in oilseed rape and 67% in maize, together with small amounts, of 5% in oilseed rape and 28% in maize, of different methylphosphinyl fatty acids. These metabolites were probably formed from L-glufosinate by deamination and subsequent decarboxylation. The residues were distributed in all fractions of the plants, with the highest contents in treated leaves and the lowest in the grains (0.07-0.3% in maize and 0.4-0.6% in oilseed rape). There was no indication of an accumulation of total residues or of residue levels above the official tolerances for glufosinate.  相似文献   

20.
Non‐destructive assessment of herbicide effects may be able to support integrated weed management. To test whether effects of herbicides on canopy variables could be detected by sensors, two crops were used as models and treated with herbicides at BBCH 20 using a logarithmic sprayer. Twelve days after spraying at BBCH 25 and 42 days after sowing, nine sensor systems scanned a spring barley and an oilseed rape field experiment sown at different densities and sprayed with increasing field rates of glyphosate and tribenuron‐methyl. The objective was to compare ED50s for crops and weeds derived by the different sensors in relation to crop density and herbicides. Although sensors were not directly developed to detect herbicide symptoms, they all detected changes in canopy colours or height and crop density. Generally ED50s showed the same pattern in response to crop density within herbicide, but there were marked differences between barley and oilseed rape. We suggest that the results of comparing the various sensor outputs could become a stepping stone to future standardisation for the benefit of the research and development of sensors that will detect herbicide effect on crops and weeds, particularly at the most vulnerable stages of development of the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号