首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

2.
Annual grass weeds such as Apera spica‐venti and Vulpia myuros are promoted in non‐inversion tillage systems and winter cereal‐based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The aim of this study was to investigate, understand and model the cumulative emergence patterns of A. spica‐venti, V. myuros and Poa annua in winter cereals grown in three primary tillage regimes: (i) mouldboard ploughing, (ii) pre‐sowing tine cultivation to 8–10 cm soil depth and (iii) direct drilling. Direct drilling delayed the cumulative emergence of A. spica‐venti and V. myuros (counted together) in contrast with ploughing, while the emergence pattern of P. annua was unaffected by the type of tillage system. The total density of emerged weed seedlings varied between the tillage systems and years with a higher total emergence seen under direct drilling, followed by pre‐sowing tine cultivation and ploughing. The emergence patterns of all species were differently influenced by the tillage systems, suggesting that under direct drilling, in which these species occur simultaneously, management interventions should first and foremost consider that A. spica‐venti and V. myuros emerge over a longer period to avoid control failures.  相似文献   

3.
Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life‐history strategies than their progenitors. Due to altered precipitation patterns from human‐induced global climate change, crop‐wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land‐management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross‐type populations (wild radish, Raphanus raphanistrum, and crop‐wild hybrid radish, R. raphanistrum × R. sativus) across a soil moisture gradient. In a seed‐burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over two years across cross types (crop‐wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop‐wild hybridisation rates and, potentially, annual variation in soil moisture conditions.  相似文献   

4.
As herbicides have limited effect in controlling Bromus diandrus in no‐till dryland cereal fields, the integration of chemical and cultural methods needs to be investigated. A field study was carried out in Lleida (Spain) during 2008–09, 2009–10 and 2010–11 seasons, in a no‐till winter cereal field integrating delayed crop sowing with herbicides in a barley–wheat–wheat rotation. Three crop sowing dates were considered: D1, mid‐October; D2, mid‐November; and D3, early December, and the herbicides mesosulfuron‐methyl plus iodosulfuron‐methyl‐sodium were applied in wheat. Weed density, cumulative emergence and fecundity were estimated for each sowing date. In all three seasons, a significant reduction in the cumulative emergence of B. diandrus as compared to D1 was observed in D2 (82.0, 97.5 and 98.1%) and D3 (80.8, 98.7 and 97.2%). In addition, a significant decrease in weed density and seed rain was observed across all sowing dates and seasons. The herbicide used in wheat was more effective under delayed sowing, due to lower weed density and presence of less developed weed seedlings. After three seasons, the populations of B. diandrus were completely depleted in D2 and D3. This study demonstrates the possibility of eliminating brome infestations in dryland cereal fields in no‐till systems through the integration of cultural and chemical strategies.  相似文献   

5.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

6.
Development of integrated weed management strategies is dependent on a thorough knowledge of the demography of individual species. The current research established eight winter or summer weed species in a winter annual wheat cropping system at Wongan Hills, Western Australia, and investigated emergence of the first cohort of each species, survivorship, plant size, seed production and seed shedding over three years (2016–2019). The winter weeds Bromus diandrus and Lolium rigidum emerged at the same time as the wheat crop, and the initial cohort of marked plants had 100% survival to seed production in each year. By comparison, other winter weed species like Hordeum leporinum, Rumex hypogaeus, Sonchus oleraceus and Polygonum aviculare frequently emerged later than the crop and had a lower percentage of plants surviving to seed production. However, individual S. oleraceus and P. aviculare plants had the greatest seed production compared to other species. All winter weeds had variable patterns of seed shedding between years, with the exception of L. rigidum. Summer weed species emerged at the same time, but plants in the initial cohort of each species did not always survive to produce seed. The early emergence and high survivorship of B. diandrus indicates high competitive ability, but shedding commenced at a similar time to L. rigidum and harvest weed seed control may be a viable control method for this species.  相似文献   

7.
Weeds tend to aggregate in patches within fields, and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at various scales, the strength of the relations between soil properties and weed density would also be expected to be scale‐dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We developed a general method that uses novel within‐field nested sampling and residual maximum‐likelihood (reml ) estimation to explore scale‐dependent relations between weeds and soil properties. We validated the method using a case study of Alopecurus myosuroides in winter wheat. Using reml , we partitioned the variance and covariance into scale‐specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales, we optimised the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.  相似文献   

8.
Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide‐resistant (MHR) Avena fatua populations utilised in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in US small grain production, and thus pose significant agronomic and economic threats. Resistance to acetolactate synthase and acetyl‐CoA carboxylase inhibitors is not conferred by known target site mutations, indicating that non‐target site resistance (NTSR) mechanisms are involved. Understanding the inheritance of NTS MHR is of upmost importance for continued agricultural productivity in the face of the rapid increase in resistant weed populations worldwide. As few studies have examined the inheritance of NTSR in autogamous weeds, we investigated the inheritance and genetic control of NTSR in the highly autogamous, allohexaploid species A. fatua. We found that NTSR in MHRA. fatua is controlled by three separate, closely‐linked nuclear genes for flucarbazone‐sodium, imazamethabenz‐methyl and pinoxaden. The single‐gene NTSR inheritance patterns reported here contrast with other examples in allogamous species and illustrate the diversity of evolutionary responses to strong selection.  相似文献   

9.
Biofumigation from Brassica cover crops may be used to control soilborne pests and weeds. A study was conducted to understand the influence of biofumigation on key processes of annual weed population dynamics. Five combinations of Indian mustard (M) and oat (O) cover crop treatments were assessed in a 3 year field study at two locations in Québec, Canada. Treatments included four spring/fall cover crop combinations (M/M, M/O, O/M, O/O) and a weedy check control with no cover crop. Prior to mowing and incorporation of cover crops, weed identification, count and biomass measurements were recorded to evaluate the total weed density, to calculate the relative neighbour effect (RNE) and weed diversity metrics and to perform principal co‐ordinates analyses. Indian mustard cover crops had no impact on weed establishment in 2014 due to low biofumigant potential compared to the oat cover crop. In 2015 and 2016, Indian mustard isothiocyanate (ITC) production increased and weed establishment within the Indian mustard cover crop decreased. Moreover, post‐cover crop incorporation decreased the next year spring weed emergence. Allelopathic interference of Indian mustard was significant when plant tissues produced more than 600 μg of allyl‐ITC g?1. It is now possible to rationalise the use of Brassica cover crops and biofumigation for weed control with an enhanced understanding of the impact of biofumigation on key processes of weed population dynamics.  相似文献   

10.
Intensification of agricultural practices has severely reduced weed diversity in arable fields, which affects the delivery of ecosystem services. However, in parallel, some species have benefited from intensive farming and have vastly increased their abundance, as is the case for Lolium rigidum and Avena sterilis in cereal fields. These highly competitive species severely reduce yields but can also compete with other weed species, and, when less intensive practices are applied, they might limit the recovery of weed diversity and the success of arable species reintroductions. A gradient of infestation was established in a winter wheat field in Catalonia (north‐eastern Spain) by sowing seeds of both species at three different densities to test their effects on the abundance, diversity and composition of the natural weed community. The emergence of seeds and the survival and biomass of transplanted seedlings of two rare species, Agrostemma githago and Vaccaria hispanica, were also evaluated. Avena sterilis and L. rigidum infestations reduced the diversity, abundance and biomass and changed the composition of the natural weed community, even at low infestation densities. Moreover, infestations of both species affected the overall performance of A. githago and V. hispanica. This study reveals that A. sterilis and L. rigidum are highly competitive and that their infestations might hamper the recovery of diverse weed communities. Their densities should be considered when selecting suitable sites for promoting diversity and reintroducing rare species.  相似文献   

11.
A better understanding of weed seed production is a key element for any long‐term management allowing some weeds to shed seeds. The challenge with measuring seed production in weeds is the large effort required in terms of time and labour. For the weed species Echinochloa crus‐galli, it was tested whether the number of seeds per panicle dry weight or per panicle length can be used to estimate seed production. Experiments were conducted in three maize fields in north‐eastern Germany. The effect of factors that could influence this relationship, such as the time of seedling emergence, the density of E. crus‐galli, the control intensity of other weeds, seed predation and field, was included. A few days before maize harvest, all panicles were removed and weighed, panicle length was measured, and for a subsample of 178 panicles, the number of seeds was counted manually. Panicle dry weight predicted the number of seeds per panicle better (R2 = 0.92) than did panicle length (R2 = 0.69). The other factors except for ‘field’ and ‘seed predation’ had no effect on these relationships. The relationships between seed number and panicle dry weight found in this study closely resembled those reported in an earlier study. Based on our results, we conclude that both plant traits are appropriate for the estimatation of seed production, depending on required level of precision and availablilty of resources for the evaluation of sustainable weed management strategies.  相似文献   

12.
In winter wheat in the USA, Aegilops cylindrica is one of the most troublesome weeds, while the pathogen Oculimacula spp. causes foot rot disease. Imazamox‐resistant (IR) and foot rot‐resistant (FR) wheat cultivars represent effective tools to control the weed and prevent disease infection. However, resistance allele (RA) movement between wheat and A. cylindrica facilitates the introgression process under herbicide and disease selection pressure. Field experiments using IR and FR A. cylindrica plants intermixed with susceptible plants were conducted to measure the proportion of the RAs in the progeny and RA movement with and without herbicide and disease selection. Yield components of A. cylindrica plants were determined across treatments. The herbicide RA proportion in the progeny was greater when plants were treated with the herbicide imazamox in both years. Disease RA proportion was greater with disease occurrence only in one year. Herbicide RA movement from resistant to susceptible plants was greater with herbicide than without it only in one year. Plants carrying the RAs had greater total spikelet weight and 1000‐spikelet weight compared with susceptible plants with or without selection. However, susceptible plants produced more spikelets than the resistant ones in the absence of selection. If plants within an A. cylindrica population acquire the herbicide RA, its proportion will increase each generation under selection. These findings contribute to the understanding of crop allele introgression into related species and the evolution of increased weediness, with weed management implications.  相似文献   

13.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

14.
There is a need for management strategies to control dominant perennial weeds and restore seminatural communities. We compared the effects of five weed control treatments on dense Pteridium aquilinum relative to an untreated experimental control over an 8‐year period with the aim of restoring acid grassland. The weed control treatments tested were as follows: cutting and bruising, both twice and thrice annually, and herbicide treatment (asulam in year 1 followed by annual spot retreatment of all emergent fronds). Pteridium aquilinum performance and plant species composition were monitored. Data were analysed using Bayesian mixed‐effect models and multivariate techniques. Cutting twice and thrice yearly and the asulam treatment all reduced frond density to zero; both bruising treatments were ineffective. The plant communities in the cut and asulam‐treated plots showed differences from the untreated and bruised plots; the asulam‐treated plots contained more ruderal species and the cut plots were more typical of acid grassland. Acid grassland recovery was fastest in the asulam‐treated plots, but the cut plots caught up after approximately 5 years. There were two important conclusions. First, an intractable weed like P. aquilinum can be eradicated and a vegetation more suited for grazing can be achieved by the continuous application of some treatments over many years. Here, success was achieved by cutting twice/thrice annually, or by a single asulam application followed by annual spot spraying of all emergent fronds for 8 years. Second, bruising, a treatment favoured by some conservation organisations, did not work and cannot be recommended. The use of long‐term, continuously applied treatments might be considered for all perennial weeds with large underground root/rhizome systems.  相似文献   

15.
Cover crops can suppress weeds within agricultural fields due to competitive and allelopathic effects. Glasshouse experiments were conducted to evaluate the relative proportions of allelopathic effects to the total weed inhibition. Six different cover crop species were combined with three weed species in the presence or absence of active carbon over a period of four weeks. Active carbon was used as an adsorbent for allelopathic substances in the soil. Our study revealed that the competition between cover crops and weeds shifted, possibly due to the minimisation of allelopathic effects by active carbon in the soil. We assume that the degree of cover crops allelopathic effects on weeds is species‐specific, both on the side of cover crops and on the weed side. The cover crops Raphanus sativus, Fagopyrum esculentum and Avena strigosa showed the highest allelopathic weed suppression with up to 28%. Additionally, Stellaria media turned out to be the most sensitive weed against allelopathic effects induced by all cover crops, except for Linum usitatissimum and Guizotia abyssinica. The knowledge about the contribution of competitive and allelopathic effects by cover crops would help to create cover crop mixtures with high weed suppressive ability.  相似文献   

16.
White mould (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. However, little is known of its impact on soybean production in Brazil. A meta‐analytic approach was used to assess the relationship between disease incidence and soybean yield (35 trials) and between incidence and sclerotia production (29 trials) in experiments conducted in 14 locations across four seasons. Region, site elevation and season included as moderators in random‐effects and random‐coefficients models did not significantly explain the variability in the slopes of the incidence–yield relationship. The Pearson's r, obtained from back‐transforming the Fisher's Z estimated by an overall random‐effects model, showed that incidence of white mould was moderately and negatively correlated with yield (= ?0.76, < 0.0001). A random‐coefficients model estimated a slope of ?17.2 kg ha?1%?1, for a mean attainable yield of 3455 kg ha?1, indicating that a 10% increase in white mould incidence would result in a mean yield reduction of 172 kg ha?1. White mould incidence and production of sclerotia were strongly and positively correlated (= 0.85, < 0.0001). For every 10% increase in white mould incidence, 1 kg ha?1 of sclerotia was produced. The relationship between disease incidence and production of sclerotia was stronger in southern regions and at higher elevation. In the absence of management, economic losses associated with white mould epidemics, assuming 43% incidence in 22% of the soybean area, were estimated at approximately US $1.47 billion annually within Brazil.  相似文献   

17.
Plants alter soil biota which subsequently modifies plant growth, plant–plant interactions and plant community dynamics. While much research has been conducted on the magnitude and importance of soil biota effects (SBEs) in natural systems, little is known in agro‐ecosystems. We investigated whether agricultural management systems could affect SBEs impacts on crop growth and crop–weed competition. Utilising soil collected from eight paired farms, we evaluated the extent to which SBEs differed between conventional and organic farming systems. Soils were conditioned by growing two common annual weeds: Amaranthus retroflexus (redroot pigweed) or Avena fatua (wild oat). Soil biota effects were measured in wheat (Triticum aestivum) growth and crop–weed competition, with SBEs calculated as the natural log of plant biomass in pots inoculated with living soil divided by the plant biomass in pots inoculated with sterilised soil. SBEs were generally more positive when soil inoculum was collected from organic farms compared with conventional farms, suggesting that cropping systems modify the relative abundance of mutualistic and pathogenic organisms responsible for the observed SBEs. Also, as feedbacks became more positive, crop–weed competition decreased and facilitation increased. In annual cropping systems, SBEs can alter plant growth and crop–weed competition. By identifying the management practices that promote positive SBEs, producers can minimise the impacts of crop–weed competition and decrease their reliance on off‐farm chemical and mechanical inputs to control weeds, enhancing agroecosystem sustainability.  相似文献   

18.
This study reviews 52 field experiments, mostly from the UK, studying the effects of cultivation techniques, sowing date, crop density and cultivar choice on Alopecurus myosuroides infestations in cereal crops. Where possible, a statistical meta‐analysis has been used to calculate average responses to the various cultural practices and to estimate their variability. In 25 experiments, mouldboard ploughing prior to sowing winter cereals reduced A. myosuroides populations by an average of 69%, compared with non‐inversion tillage. Delaying drilling from September to the end of October decreased weed plant densities by approximately 50%. Sowing wheat in spring achieved an 88% reduction in A. myosuroides plant densities compared with autumn sowing. Increasing winter wheat crop density above 100 plants m?2 had no effect on weed plant numbers, but reduced the number of heads m?2 by 15% for every additional increase in 100 crop plants, up to the highest density tested (350 wheat plants m?2). Choosing more competitive cultivars could decrease A. myosuroides heads m?2 by 22%. With all cultural practices, outcomes were highly variable and effects inconsistent. Farmers are more likely to adopt cultural measures and so reduce their reliance on herbicides, if there were better predictions of likely outcomes at the individual field level.  相似文献   

19.
Several Fusarium species cause harmful cereal diseases, such as fusarium head blight and crown rot, which, during pathogenesis, may result in significant grain yield and quality losses. Several species of agricultural weed are believed to be alternative and reservoir hosts for Fusarium spp.; however, studies have not comprehensively evaluated those weed species in cropping systems that may harbour these fungi. The objective of this study was to determine weed species in cereal‐based crop rotations that are asymptomatically colonised by Fusarium spp. We sampled all species of weed present in fields that were managed under six different crop sequences in 2015 and 2016. The study yielded 2326 single‐spore isolates of Fusarium spp. derived from various organs of asymptomatic weeds. Isolates were identified morphologically and then confirmed using PCR with species‐specific primers and/or sequencing of tef1α gene fragments. Isolates of nine Fusarium spp. were obtained from 689 of the 744 individuals collected that represented 56 weed species. Each weed species harboured at least one species of Fusarium, and >80% were colonised by 3–9 Fusarium spp. In total, we identified 27 dicotyledonous weed species that were previously undocumented as Fusarium hosts and 251 new weed × Fusarium species combinations were revealed. Consequently, there is a greater risk of negative Fusarium impacts on cereal crops than was previously thought. We suggest effective weed management and inversion soil tillage may help mitigate these impacts.  相似文献   

20.
Volunteer summer‐annual oilseed rape (sOSR; Brassica napus) is an ongoing concern in Canadian crop production. Large harvest seed losses and secondary dormancy in this species generate a persistent volunteer seedbank. Yield loss in subsequent crops, potential sOSR oil profile contamination and herbicide‐resistance trait introgression create a need for effective sOSR seedbank management. This field study evaluated the effects of timing and type of implement of post‐harvest soil disturbance and seeding a winter cereal on volunteer sOSR population persistence and demographic life‐stage transition rates at five locations in Manitoba, Canada. Following sOSR harvest and supplemental seed rain, seedbank densities ranged from 6770 to 15360 and 50 to 2610 seeds m?2 among sites in autumn and spring respectively. In contrast to European research on winter‐annual oilseed rape, early autumn soil disturbance, shortly after sOSR harvest, was the best strategy to decrease volunteer sOSR persistence (3% population persistence from autumn to spring, compared with 6% in zero tillage). Substantial autumn seedling recruitment (38% of the autumn seedbank) and subsequent winterkill contributed to lower population persistence. Soil disturbance in spring stimulated spring seedling recruitment compared with other disturbance timings (11% and 3% of the spring seedbank, respectively). The implement used for soil disturbance and seeding winter wheat (Triticum aestivum) had minimal effect on population persistence. This research showed that timing of post‐harvest soil disturbance should be utilised as an effective tactic to decrease population persistence of volunteer sOSR via stimulation of autumn seedling recruitment and concomitant winterkill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号