首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固定化混合菌修复冻融土壤PAHs污染的研究   总被引:1,自引:1,他引:0  
从石油污染冻融土壤中筛选出1株细菌(Pseudomonas sp.)和1株真菌(Mortierella alpina),以玉米芯为载体对混合菌进行固定化,研究低温冻融环境下,固定化混合菌对菲(Phe)和苯并[b]荧恩(BbF)污染土壤的生物强化修复作用。通过高效液相色谱法(HPLC)分析Phe和BbF的降解动态,用Michaelis-Menton与Monod动力学方程将结果进行拟合,采用高通测序分析修复过程中微生物群落的变化。结果表明,处理前,冻融土壤中Phe、BbF的浓度分别为(105.4±4.8)、(6.12±1.1)mg·kg~(-1),60 d修复试验后,固定化混合菌可降解土壤中(56.62±3.21)%的Phe和(38.21±1.82)%的BbF,固定化混合菌对冻融环境有较好的抗性,其降解能力优于游离菌。修复试验中,稳定前期降解速率均高于稳定期降解速率。固定化混合菌的投加,提高了Phe、BbF的降解速率,缩短了Phe、BbF降解的半衰期,反应速率分别提高至2.02、0.65 d-1,半衰期分别缩短至50.17 d和82.12 d;改变了土壤中微生物的群落结构及多样性,其中细菌的多样性和均匀度均降低,多环芳烃(PAHs)的降解与细菌的群落多样性和均匀度呈现负相关;细菌变形杆菌门(Proteobacteria)和真菌鞭毛菌门(Mortierellomycota)成为主要的优势菌门,相对丰富度分别为88.72%和81.15%;细菌假单胞菌(Pseudomonas sp. SDR4)和真菌高山被孢霉菌(Mortierella alpina. JDR7)相对丰度分别上升至80.03%和81.15%,形成了显著的降解真菌-细菌共生优势菌株体系,明显提高了低温土壤中的PAHs污染的修复效果。固定化混合菌可广泛应用于冻融环境下土壤PAHs污染的生物强化修复。  相似文献   

2.
粘土矿物固定化微生物对土壤中阿特拉津的降解研究   总被引:6,自引:0,他引:6  
以粘土矿物为载体,采用吸附挂膜法对已筛选的阿特拉津降解菌株进行固定化,并应用固定化微生物降解土壤中的阿特拉津.结果表明,该菌株在粘土矿物上生长良好,根据菌种生理生化特性、环境扫描电镜图片以及16SrDNA基因的相似性分析初步鉴定该菌株为Ochrobactrum sp..接种降解菌能明显加快阿特拉津在土壤中的降解速率,粘土矿物固定化微生物的降解效果要明显优于游离菌,粘土矿物粒径越小,固定化微生物的降解效果越好,纳米粘土矿物同定化微生物的降解效果要好于原粘土矿物.用一级动力学方程描述阿特拉津在土壤中的降解过程,不同土壤中阿特拉津的降解速率不同.阿特拉津在红壤、砂姜黑土、黄褐土中的降解半衰期(t1/2)分别为36.9、49.1、55.0 d,投加纳米蒙脱石固定化降解菌后的半衰期则分别为16.3、25.3、21.7 d.  相似文献   

3.
【目的】研究不同原材料生物炭对农田土壤阿特拉津去除效果和微生物群落的影响,获得去除土壤阿特拉津的最佳生物炭类型,为阿特拉津污染农田土壤的强化修复提供参考。【方法】以牛粪、甘蔗渣和污泥为原材料制备生物炭,分别于0、10、20、30和40 d测定阿特拉津降解率及土壤pH、有机质含量、腐殖质含量、酶活性和细菌群落结构,并采用冗余分析探明阿特拉津降解率与环境因子及土壤细菌群落结构的相关性。【结果】添加生物炭可明显促进土壤中的阿特拉津降解,3种生物炭的降解率排序为甘蔗渣生物炭(67.94%)>牛粪生物炭(58.39%)>污泥生物炭(48.63%)。同时,添加生物炭显著提高土壤p H、有机质和腐殖质含量(P<0.05,下同),提升微生物活性和群落结构多样性,加速阿特拉津的生物降解,以甘蔗渣生物炭效果最显著,相较于不添加生物炭(CK),pH提升23.76%,有机质含量升高4.39 g/kg,腐殖质含量升高2.24 g/kg。此外,施入生物炭显著提高土壤脱氢酶、过氧化氢酶和脲酶活性,并促进阿特拉津降解菌鞘脂单胞菌科(Sphingomonadaceae)、伯克氏菌科(Burkholderiaceae)、链霉菌科(Streptomycetaceae)、微球菌科(Micrococcaceae)和小单孢菌科(Micromonosporaceae)的相对丰度提升。冗余分析表明,环境因子及降解功能微生物均对阿特拉津的降解做出贡献,甘蔗渣生物炭处理与pH、有机质、阿特拉津降解率及腐殖质呈正相关。【结论】施入生物炭可改善土壤理化性质(pH、有机质和腐殖质),明显提升阿特拉津降解菌鞘脂单胞菌科、伯克氏菌科、链霉菌科、微球菌科和小单孢菌科相对丰度,进而加速土壤中阿特拉津的去除,以甘蔗渣生物炭的效果最佳。收集废弃甘蔗渣制成生物炭,既可实现农业废弃物的回收利用,又能助力农田土壤中阿特拉津污染修复和地力提升。  相似文献   

4.
玉米秸秆生物炭固定化Acinetobacter lwoffii DNS32性能研究   总被引:2,自引:1,他引:1  
用玉米秸秆制备生物炭,并以其作为固定化菌剂的廉价载体,与阿特拉津降解菌Acinetobacter lwoffii DNS32制备成具有吸附-降解性能的新型菌剂,用以降解水溶液中阿特拉津。结果表明:固定化菌剂可在40 h内将100 mg·L~(-1)的阿特拉津降解94%,降解率比游离菌高24%;固定化菌剂在pH=5和pH=10时,降解率分别为42%和35%,说明其具有更好的pH适应性;温度为10℃时,固定化菌剂的降解率比游离菌高14%,说明其具有更好的耐寒性。为期30 d的模拟修复阿特拉津污染的实验表明:生物炭固定化菌剂在30 d后仍然具有活性,该固定化菌剂具有高效且持久的阿特拉津污染修复效果。  相似文献   

5.
采用盆栽根袋培养法,研究了根际效应在狼尾草降解土壤阿特拉津中的作用。结果表明,盆栽培养28 d后,狼尾草对土壤中阿特拉津有较好的根际强化降解效果,狼尾草根际土壤阿特拉津去除率为52.70%,非根际土壤的阿特拉津去除率为37.60%。土壤自身具有修复阿特拉津的潜能,无狼尾草处理的湛江砖红壤中阿特拉津降解以非生物降解为主,降解率为16.90%,土著微生物对阿特拉津的生物降解效果弱于非生物降解,仅为11.70%。狼尾草通过根际效应显著提高了土壤总微生物数量和活性,增加了土壤可培养细菌、真菌和放线菌的数量,尤其是土壤可培养细菌数量,提升了土壤细菌群落结构的丰富度和均匀度,进而间接强化土壤阿特拉津的生物降解。  相似文献   

6.
以杂交杨树作为修复研究对象,利用根箱和Biolog系统开展阿特拉津污染土壤不同酸碱调节剂处理树木修复过程中不同根际微生物多样性研究。结果表明:树木修复初期(第30 d)酸碱调节剂对土壤微生物活性及其群落碳源利用表现出显著的促进作用;而至修复第90 d时,酸性调节剂处理土壤的微生物活性及其群落碳源利用能力开始回落下降,甚至低于单纯植入杨树处理,而碱性调节剂的施用仍然对土壤微生物活性及其微生物群落碳源利用能力具有显著的促进效果。但杨树树木修复阿特拉津污染土壤过程中根际微生物整体活性及其群落结构演变并没有表现出稳定的规律性。鉴于Biolog ECO碳源有限,并不能完全反映土壤微生物群落结构的功能多样性,不同酸碱调节剂处理杨树修复土壤阿特拉津污染过程中根际微生物活性及群落结构不规律变化的原因及相关机理,还有待结合更精密的分析测试手段作进一步深入研究。  相似文献   

7.
以杂交杨树作为修复研究对象,利用根箱和Biolog系统开展阿特拉津污染土壤不同酸碱调节剂处理树木修复过程中不同根际微生物多样性研究。结果表明:树木修复初期(第30 d)酸碱调节剂对土壤微生物活性及其群落碳源利用表现出显著的促进作用;而至修复第90 d时,酸性调节剂处理土壤的微生物活性及其群落碳源利用能力开始回落下降,甚至低于单纯植入杨树处理,而碱性调节剂的施用仍然对土壤微生物活性及其微生物群落碳源利用能力具有显著的促进效果。但杨树树木修复阿特拉津污染土壤过程中根际微生物整体活性及其群落结构演变并没有表现出稳定的规律性。鉴于Biolog ECO碳源有限,并不能完全反映土壤微生物群落结构的功能多样性,不同酸碱调节剂处理杨树修复土壤阿特拉津污染过程中根际微生物活性及群落结构不规律变化的原因及相关机理,还有待结合更精密的分析测试手段作进一步深入研究。  相似文献   

8.
纳米Fe3O4/微生物联合体系对2,4-D和阿特拉津降解的研究   总被引:1,自引:0,他引:1  
采用纳米Fe3O4/微生物联合体系降解溶液中2,4-D和阿特拉津,考察了不同2,4-D和阿特拉津初始浓度、微生物接种量、纳米Fe3O4投加量、溶液pH值等对降解效果的影响。结果表明,纳米Fe3O4/微生物联合体系对2,4-D和阿特拉津的降解率显著高于纳米Fe3O4和微生物单一体系;2,4-D和阿特拉津初始浓度在0~10mg·L-1、微生物接种量在0~12mg·L-1、纳米Fe3O4的投加量在0~200mg·L-1范围内,2,4-D和阿特拉津的降解率随其初始浓度、微生物接种量和纳米Fe3O4投加量的增大而增加。溶液pH3.0左右、2,4-D和阿特拉津初始浓度10mg·L-1、微生物接种量12mg·L-1、纳米Fe3O4投加量200mg·L-1,是反应的最佳条件,此实验条件下反应7d,2,4-D和阿特拉津的残留率分别降低至35.7%和54.0%。  相似文献   

9.
【目的】研究产脲节杆菌DnL1-1与小麦联合对阿特拉津污染土壤联合降解修复的作用效果.【方法】利用盆栽试验考察了不同浓度阿特拉津处理下小麦对产脲节杆菌DnL1-1种群密度以及对阿特拉津降解的影响.【结果】随着阿特拉津浓度的逐渐降低,小麦根际及非根际土壤中DnL1-1定殖浓度也逐渐降低;接菌浓度越低,定殖效果越差,相应对阿特拉津的降解效果也越差;不同体积分数阿特拉津处理(5 833.3、466.7、116.7μg/kg)下,DnL1-1与小麦协同对阿特拉津的平均降解率依次为98.4%、92.0%和84.5%,显著高于DnL1-1单独作用;阿特拉津体积分数为116.7μg/kg时,小麦与DnL1-1有效减少了其降解产物DEA、DAA、HA和DIA的残留积累,(DEA、DAA、HA和DIA减少了61.6%、52.2%、9.7%和24.4%.【结论】产脲节杆菌DnL1-1与小麦拌种可有效地减少低浓度阿特拉津及其脱烷基降解产物的积累,对于低浓度阿特拉津污染土壤的原位修复具有一定的应用效果.  相似文献   

10.
植物修复(Phytoremediation)技术是消除或减少土壤环境中有机污染物的重要手段.本研究采用植物转基因技术对土壤中除草剂阿特拉津的降解进行了探索.通过农杆菌介导将阿特拉津氯水解酶基因ADl-atzA转入烟草中,获得了转基因植株.T1代植株在浇灌了20 mg·L-1阿特拉津溶液的模拟污染土壤条件下生长45 d,抗性植株的RT-PCR结果证实叶片中阿特拉津氯水解酶基因得到正常转录,液相色谱质谱分析在叶片中检出阿特拉津的水解产物羟基阿特拉津.结果表明,用转基因植物修复阿特拉滓污染土壤是值得进一步探索的途径.  相似文献   

11.
报道了阿特拉津 (Atrazine)在农田灌溉水及土壤中残留量的分析方法。采用气相色谱氮磷检测器 (NPD)石英毛细管柱测定。通过对一起特大污染事故对农田灌溉水及土壤的污染进行的跟踪监测 ,掌握了在自然环境条件下阿特拉津在农田灌溉水中经过1年时间仍有检出 ,其降解率为99.5 %。在受污染的农田土壤中阿特拉津在作物生长期内 (6月上旬—11月上旬 )均可检出 ,其降解率为87.9 %。  相似文献   

12.
阿特拉津对土壤微生物类群及土壤呼吸强度的影响   总被引:1,自引:0,他引:1  
通过实验室培养试验,研究了阿特拉津对土壤中3大类微生物种群动态变化的影响,结果表明:阿特拉津对细菌、放线菌的生长均有明显促进作用,对真菌生长的促进作用不明显;细菌和放线菌是阿特拉津胁迫下的优势菌群.利用密闭法测定阿特拉津对土壤呼吸的影响表明,阿特拉津对土壤呼吸有促进作用:质量分数低(0.43、0.87 μg·g-1)的阿特拉津的促进作用持续时间短;质量分数高(1.73、8.7 μg·g-1)的阿特拉津的促进作用持续时间较长.  相似文献   

13.
为探讨固定化微生物对煤矿区3环PAHs污染老化土壤的修复效果,以番茄秸秆为固定化载体材料,通过“吸附-包埋-交联法”形成了固定化芽孢杆菌微球,并采用土培试验对煤矿区土壤3环PAHs去除进行研究。结果表明,游离芽孢杆菌M1对煤矿区污染老化土壤单体芴(Flu)、菲(Phe)和蒽(Anth)的去除随接菌量的增加先升高后降低。在接菌量为1%、10%、20%(体积质量比)的游离芽孢杆菌处理中,10%处理(B2M1)对土壤Phe的去除率最高,为21.35%。不同接菌量的固定化芽孢杆菌M1微球处理对3种PAHs的去除率显著高于微球基质处理,其中,接菌量20%的固定化芽孢杆菌处理(X3M1)对土壤Flu的去除率最高,达95.25%,比不含M1菌株的番茄秸秆微球基质处理(X3)提高了12.03个百分点。对比分析扣除微球基质后的固定化M1与添加同等菌量的游离M1去除结果看出,经固定化后的菌株M1比游离菌M1显著促进了对煤矿区污染老化土壤3环PAHs的去除,不同接菌量对单体Flu和Anth去除率为72.17%~75.52%和8.97%~28.88%,分别比游离菌增加了64.10~72.31个百分点和8.13~15.24个百分点,单体Phe 1%接菌量处理比游离菌提高了5.07个百分点。从土壤酶活性看,土壤过氧化氢酶活性在固定化M1三种剂量处理下均显著高于微球基质和游离菌M1处理,随剂量增加依次是游离菌处理的1.16、1.23倍和1.20倍,是微球基质处理的1.28、1.19倍和1.16倍,与3环PAHs的去除率规律相一致,而固定化M1处理多酚氧化酶、过氧化物酶和纤维素酶活性相对于游离菌处理有不同程度的降低。综上,固定化芽孢杆菌M1对土壤3环PAHs去除具有显著促进作用,为煤矿区PAHs污染老化土壤原位修复的应用提供了重要技术参数与支撑。  相似文献   

14.
石健  邹开云  丁建东 《安徽农业科学》2010,38(12):6441-6443
[目的]了解不同类型土壤中阿特拉津的解吸行为。[方法]分别将一定量的贫瘠土、耕作土及污泥土按一定比例加入已知浓度和体积的阿特拉津药液中,两相分开后测定液相中农药的平衡浓度,计算单位质量土壤吸(解)附农药的量,并分析土壤有机质含量、pH值、温度及投加量等对阿特拉津解吸过程的影响。[结果]阿特拉津在3种土壤中解吸量的变化趋势基本一致,其解吸浓度随时间的推移不断上升;土壤有机质含量与农药解吸量成正比;在合适的温度范围内,温度升高有利于农药解吸;在适宜的pH值范围内,农药的解吸量随土壤pH值的升高而增加。[结论]土壤中阿特拉津的解吸行为受土壤有机质含量、pH值、温度及投加量等的影响较大。  相似文献   

15.
采集除草剂阿特拉津污染的土壤,通过直接涂布法和富集驯化培养分离法,分别获得6株和5株能够降解阿特拉津的细菌。通过降解效率和降解动态试验,筛选到1株高效降解阿特拉津的菌株FM326,该菌株能以阿特拉津为唯一的碳源和氮源生长,培养96h后对1000mg·L-1阿特拉津降解效率达到97%。通过生理生化鉴定和16SrDNA序列分析,菌株FM326鉴定为节杆菌属(Arthrobacter sp.)细菌。该菌株表现出最适生长温度30~35℃,最适生长pH值5~9,好氧生长的生长特性。  相似文献   

16.
为准确评估邻苯二甲酸二丁酯(DBP)污染对土壤环境的影响,对比研究不同DBP污染方式[高剂量(20 mg/kg)单次污染处理(S处理)、低剂量(1 mg/kg)累积污染(每7 d污染1次,连续污染20次)处理(R处理)、CK(无污染母土)]对DBP降解及土壤细菌群落的影响。结果表明,土壤细菌群落的α多样性对不同DBP污染方式的响应较不敏感;2种污染方式均显著改变了土壤细菌群落的β多样性,S处理对红壤细菌群落结构的影响较大,R处理对黄棕壤细菌群落结构的影响较大;在2种污染方式处理下,红壤、黄棕壤中部分具有氮素转化、有机物分解、拮抗病原菌和植物促生等重要功能的细菌群落产生了显著扰动;此外,2种污染方式均显著提高了土壤对DBP的降解能力,与S处理相比,R处理的红壤、黄棕壤中DBP的降解半衰期分别缩短了77.18%、28.57%,表明低剂量累积污染处理方式对土壤中DBP的降解有更强的促进作用。  相似文献   

17.
本文应用零价铁(Fe0)技术,以阿特拉津为目标污染物,考察了零价铁的效应,研究了不同零价铁投加量、不同溶液初始pH值等因素对阿特拉津降解效果的影响。结果表明,零价金属铁脱氯降解阿特拉津,随着金属铁质量的增加,阿特拉津的降解率也会增加;溶液初始pH值2~11时,阿特拉津降解率随其低pH值的增加而减小,可以促进零价金属铁的腐蚀,有利于阿特拉津降解。  相似文献   

18.
细菌阿特拉津氯水解酶基因的功能及其应用   总被引:1,自引:0,他引:1  
简要介绍了能降解除草剂阿特拉津的细菌的种类和它们的生物降解途径、阿特拉津氯水解酶的功能和定向进化的研究进展,以及阿特拉津氯水解酶基因atzA在污染土壤生物修复和转基因植物研究中的应用。  相似文献   

19.
两种生物炭对两种质地土壤中阿特拉津淋溶与迁移的影响   总被引:2,自引:0,他引:2  
通过室内培养和模拟土柱淋溶实验,研究了在500℃热解温度下制备的甘蔗叶生物炭和蚕沙生物炭对阿特拉津在冲积土(砂土)和潮土(粘土)中淋溶与迁移的影响,两种生物炭的添加比例分别为0.2%和0.5%,污染土中AT的浓度为10 mg·kg-1。结果表明,添加生物炭显著增加了表层土壤的阳离子交换量和有机碳的含量,明显抑制了阿特拉津在土柱中的淋溶与迁移。在同一种土壤中,生物炭添加量相同时,甘蔗叶生物炭对土壤中阿特拉津的淋溶与迁移抑制效果较蚕沙炭明显,并且同一种生物炭添加量越高,抑制作用越明显。对比两种质地土壤中阿特拉津的淋出率发现,生物炭的加入对抑制粘土中阿特拉津的淋溶与迁移作用更明显。相关性分析结果表明,土柱表层土壤的阳离子交换量、有机碳含量与底层土壤阿特拉津含量、淋溶液阿特拉津累积量均呈显著负相关。可见,生物炭的添加可以明显固定土壤中的阿特拉津,减少其淋溶与迁移,有效修复阿特拉津污染的土壤,控制其对地下水的污染。  相似文献   

20.
为研究不同剂量生物炭对四环素污染的土壤的原位修复效果,本研究以甘蔗渣为原材料制备生物炭,并通过不同剂量的添加(1%、2%、3%,分别记作BC-1、BC-2、BC-3)明确了修复过程中四环素去除效率、土壤理化性质、酶活性和降解微生物的变化情况。结果表明:生物炭施入显著加速了土壤中四环素的降解,其中BC-2处理(79.50%)显著高于BC-3(62.50%)和BC-1(50.30%)处理。同时生物炭处理显著提高了土壤pH及有机质和腐殖质含量,在培养结束后,各处理的pH较CK(四环素污染土壤)分别提升了0.46、0.54、0.80,有机质分别提升了1.37、2.82、5.12 g·kg-1,腐殖质分别提升了4.48、6.55、5.21 g·kg-1。生物炭处理显著提升了土壤脲酶、蔗糖酶、过氧化氢酶和脱氢酶活性,其中BC-2处理提升效果最好,较CK分别提升40.00%、183.30%、65.30%和157.10%。在生物炭处理中,具有降解作用的潜在降解菌Achromobacter(无色杆菌属)、Sphingomonas(鞘脂单胞菌属)、Stenotr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号