首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为快速、准确提取火龙果种植株数,以大疆Matrice 600Pro六旋翼无人机搭载高光谱成像仪,获取关岭县上官镇乐安村火龙果种植基地的高光谱影像,通过影像处理,借助ENVI遥感影像处理软件结合ArcGIS空间分析软件,采用波谱角分类方法实现火龙果植株的提取。结果表明:基于无人机高光谱遥感技术对研究区火龙果植株数的提取精度为92.94%,利用该技术可实现快速、准确地提取火龙果种植株数,可为火龙果园精准管理提供一定的技术支撑。  相似文献   

2.
针对无人机可见光影像对背景与目标地物混淆时提取识别难的问题,利用四旋翼无人机采集喀斯特峡谷区的火龙果影像匹配点云数据,对原始点云数据进行去噪、滤波和归一化等处理,通过建立高精度的数字高程模型(DEM)、数字表面模型(DSM),进而建立高精度的冠层高度模型(CHM),并以目视解译的火龙果株数为参照,对火龙果株数进行识别提取验证。结果表明,运用无人机影像匹配点云数据,通过冠层高度模型在一定程度上可以消除植株下方杂草的影响;当样地内的基础设施或存在地物高度与火龙果冠层接近,导致误提,错提率最高为8.55%,漏提率最高为12.28%;在各样区中,运用种子点进行火龙果株数提取的精度均在92.38%以上;运用植被冠层进行火龙果株数提取的精度均在90.68%以上。由此表明,运用无人机影像匹配点云数据提取火龙果具有快速、简单有效、成本低、精度可靠的特点,适用于喀斯特山区作物株数的快速提取,可以与基于颜色指数的提取方法互为补充。  相似文献   

3.
为火龙果的科学估测产量及其种植区精细化管理提供技术支撑,以关岭县板贵乡火龙果种植基地为研究区域,利用低空遥感技术结合ENVI以及ArcGIS等辅助工具对火龙果种植信息(植株数量与倒伏植株数量)进行快速提取,通过所得信息与目视解译信息对比分析,验证低空遥感技术提取信息的可靠性。结果表明:研究区内目视解译提取的火龙果株数为278株,精准农业工具包提取的株数为270株,分类结果精度为97.12%;目视解译提取的火龙果倒伏株数为7株,统计得出倒伏株数为6株,监测精度为85.71%。基于低空遥感技术提取田间火龙果株数及植株倒伏信息具有一定的可行性。  相似文献   

4.
为厘清火龙果种植面积情况,利用低空无人机搭载多光谱传感器,对望谟县乐元镇拉么村火龙果基地进行数据采集,采用最大似然法提取火龙果种植区域和计算面积.研究表明,在进行植被指数计算时,火龙果植被指数为0.4~0.6,多光谱影像上纹理比较明显,周边以杂草为主,杂草的植被指数为0.2~0.4,能够较好地区分火龙果和杂草;结合植被...  相似文献   

5.
为解决卫星高光谱影像分辨率低、获取周期长、价格昂贵等问题,利用无人机搭载高光谱传感器能够获取分辨率高、价格较低且时效性较好的优势,以关岭县上关镇乐安村火龙果(Hylocereus undatus‘Foo-Lon’)种植示范园区为研究区域,使用六旋翼无人机M600搭载PikaXC2传感器获取高分辨率的高光谱影像数据。结果表明,通过对高光谱影像波段标准差和相关性进行分析,初步筛选出适合火龙果分析研究的波段185个,其中可见光波段109个、近红外波段76个,波段相关性系数的分布呈现中间高、两边低的特点。可见光波段相关性系数均值均大于近红外波段内部之间的均值。  相似文献   

6.
《安徽农业科学》2020,(2):225-227
蓝藻在风力等气候因素的影响下,其状态更迭快速,而传统蓝藻监测方法速度慢,观测范围小,无法满足对蓝藻快速准确监测的技术需求。无人机遥感技术具有高时效、高机动性、高分辨率等特点,使其能够适用于快速变化的蓝藻水华监测。为验证无人机遥感技术在蓝藻快速识别和提取应用中的可靠性,利用集成RTK模块的大疆精灵4无人机获取太湖贡湖湾区域高分辨率影像,并通过一系列影像分析发现蓝藻提取正确率达到94.68%,Kappa系数为0.89,证实利用无人机影像进行蓝藻覆盖区域提取准确高效,说明其在蓝藻水华监测应用中具有广阔前景。  相似文献   

7.
高光谱影像由于其波段众多,传统的多光谱图像的信息提取方法不适合高光谱影像的处理。利用无人机搭载美国Headwall公司的最新纳米级高光谱成像光谱仪,采集广东省广州市增城区某处的高光谱影像,提取光谱数据,分析不同地物间光谱曲线特征和差异,采用决策树进行地物分类。结果表明:根据无人机高光谱数据中不同地物之间光谱特征曲线的差异,建立分类树,不仅可以大大减少分类处理的工作量,且分类效果良好,准确度高。  相似文献   

8.
作物种植行自动检测研究现状与趋势   总被引:1,自引:0,他引:1  
陈鹏飞  马啸 《中国农业科学》2021,54(13):2737-2745
大田作物一般成行种植,以提高种植效率和方便田间管理。因此,作物种植行自动检测对于智能农机携带传感器拍摄影像实现自主导航、精准打药,乃至基于无人机搭载传感器拍摄高分辨率影像生成田间的精准管理作业单元都具有重要意义,是智慧农业管理的重要组成部分。本研究首先系统归纳总结了已有作物种植行自动检测方法,分析了Hough变换法、最小二乘法、绿色像元累积法、Blob分析法、滤波法、消隐点法等作物种植行提取方法的基本原理、发展现状与优、缺点;其次,针对已有研究,提出目前还存在的、需要探讨的科学技术问题,比如不同空间和光谱分辨率影像如何影响作物种植行提取的精度;怎样基于无人机识别不同空间分布特征的作物种植行并进行长势空间精准制图;如何构建标准化的作物种植行识别技术流程等;最后,针对种植行提取技术现状与存在的问题,提出未来的若干研究方向,包括能适应高杂草压力等复杂环境的作物种植行精准识别技术,以提高智能农机自主导航精度;能基于种植行识别结果进行作物长势精准制图,从而支撑田间精准分区的方法;耦合无人机遥感精准作物长势监测与智能农机作业的田间精准管理技术等。本文可为影像中作物种植行自动提取及其相关应用研究提供参考。  相似文献   

9.
【目的】利用2018年5和6月获取的无人机多光谱影像对北京市大兴试验基地的部分农田进行地物类型提取研究。【方法】确定感兴趣地物种类,对影像进行时相与光谱特征分析,然后确定归一化植被指数NDVI、归一化绿蓝差异指数NGBDI、修正型比值植被指数MSR和红边波段反射率可以作为最优分类特征,通过基于光谱变量阈值分割的决策树分类法,实现地物分类,并提取种植面积,选取基于目视解译的地面调查数据进行方法验证。【结果】基于时相与光谱特征的决策树分类方法有较好效果,该方法用于小麦、果树和大棚的提取,误差值分别为10.68%、6.06%和16.48%,面积提取误差在17%以内,对无人机多光谱遥感影像进行地物识别具有一定的适用性。【结论】无人机低成本、高效率的优势为农田信息及时获取提供参考。  相似文献   

10.
PHANTOM 4 RTK+大疆像控处理技术在燕麦长势模拟中的应用   总被引:1,自引:1,他引:0  
【目的】 利用小型消费级无人机航拍获取地物影像,通过地物阴影、高度差、色差快速提取地物,进而获取地物结构信息。【方法】 文章选取云南省曲靖市会泽县的大桥乡为研究区域,针对冬闲田闲置土地资源、种植结构相对单一的区域展开试验,利用高分辨率无人机遥感影像对燕麦进行识别,同时结合超声波传感器数据估算地物高度,并与实际高度和无人机生成的传统测高方法得到的高度进行相关性分析,获取高精度、可靠性强的数据。【结果】 基于可见光燕麦的总体分类精度为91.46%,Kappa系数为0.857,在增加DSM数据后的分类总体精度为98.91%,Kappa系数为0.982。研究表明由无人机获取的代表燕麦冠层高度信息的DSM数据能够显著提升燕麦的识别效果。相对于传统无人机测高方法生成数字表面模型提取地物高度的方法,依赖于光谱和高程信息识别地物信息的方法在计算地物高度时,精度更高,识别结果更可靠。【结论】 该文提出的小型消费级无人机利用地物阴影计算燕麦高度的方法,改进了相机镜头光心地位和RTK天线中心点地位补偿作用,打通了RTK模块、飞控模块及相机云台模块之间的通讯,能够应用于实际准确获取影像地位信息,为无人机遥感快速、准确地获取地物高度信息提供了一种新的思路。  相似文献   

11.
本文从无人机遥感监测作物病虫害概况、病虫害光谱相应生理机制、农作物病虫害无人机遥感监测原理等方面对遥感技术在病虫害监测中的研究进行概述;并从多光谱无人机遥感影像监测、高光谱无人机遥感影像、无人机可见光影像、低空与航空无人机遥感影像监测、基于卫星平台的遥感影像监测等方面对无人机遥感监测作物病虫害研究进展进行表述.  相似文献   

12.
基于无人机遥感影像的三维森林景观可视化   总被引:4,自引:0,他引:4  
无人机遥感是新近发展起来的一种先进的遥感方式,具有快速响应、机动灵活、影像分辨率高等特点。采用无人机对研究区森林进行航拍,探讨利用无人机影像提取DEM的技术方法,并对提取的DEM进行精度检验,然后在提取的DEM上叠加获得的高分辨无人机影像,独立实现了对研究区森林景观的三维可视化,结果表明利用无人机影像提取的DEM精度较高,生成的三维森林景观真实感强,能很好的展现森林的生态、文化、美学价值。  相似文献   

13.
利用遥感技术提取水稻种植面积,一直以来都是难点。利用高分1号卫星影像作为数据源,找到一种能快速、准确提取水稻种植面积的方法。通过对水稻成熟期遥感影像的光谱分析,根据水稻成熟期的"蓝移"现象,发现在蓝光和绿光波段光谱特征与其它地类差异明显,并通过波段运算,建立模型,增强了这种差异,使得水稻种植面积提取精度更高。利用东北地区独特的气候特点,把影响水稻种植面积提取的林地去除,利用该方法提取水稻种植面积精度达到93.5%。  相似文献   

14.
为实现无人机遥感农作物类别的快速识别提供参考,以贵定县马场河乡马长河村部分耕地遥感影像作为研究对象,采用无人机采集地面农作物遥感影像,分析农作物之间纹理和色彩特征差异,对农作物的类型及面积信息进行提取和检验,获取不同种类农作物的种植基本信息。结果表明:利用色彩纹理特征组合对大豆、水稻和玉米种植信息的提取结果误差分别为7. 01%、9. 71%和1. 75%,提取效果较好。可为农作物分类提取提供参考。  相似文献   

15.
为准确测量皖南烟区集中连片烟叶种植面积,核算试验烟田实栽株数、缺苗率。利用测绘无人机搭载不同挂载设备,获得试验区域正射影像、激光雷达点云数据。结果表明,无人机测绘正射影像,通过后处理并测量得到的田块面积精准率99%,团棵期烟株数量准确率99%,清田期烟株数量准确率77.83%。利用无人机测绘在合适窗口期核定烟草种植面积及推算实栽烟株数可行性强,可复制推广。  相似文献   

16.
[目的]充分发掘遥感影像的空间、时间和光谱等特征谱信息,探索地块基元支持下的多源遥感数据作物种植信息自动识别方法,为作物种植结构信息的快速、精细化调查提供借鉴.[方法]以广西扶绥县为研究区,通过对高空间分辨率影像的多尺度分割和对象廓线编辑,提取精细农田地块信息;以地块为基元获取覆盖作物生育期内的时序光谱特征;基于时序光谱及其变化定义与作物长势状况相关的描述参量,形成静态光谱与动态过程特征结合的多维特征空间,结合作物的物候节律特征构建作物种植信息提取模型,实现主要农作物种植结构信息的提取.[结果]依据上述方法绘制出广西扶绥县甘蔗、水稻和其他作物农田及草地、林地、水体、城镇建设用地等的精细地块图,其中,提取广西扶绥县甘蔗和水稻作物的总面积分别为82420.01和6806.67 ha,作物提取的总体分类精度为86.8%,Kappa系数为0.84.[结论]提取的广西扶绥县作物种植结构的成果满足使用精度要求,可为精准农业补贴投放、农业灾害定损等政策制定提供依据,而技术方法对于作物种植结构信息的快速、精细化调查具有借鉴意义.  相似文献   

17.
本文以冬小麦为主要研究对象,获取其不同生育期的无人机高光谱影像,并根据其高光谱数据建立光谱指数,利用多元线性回归等分析方法建立冬小麦各种生育期的GMI反演模型,在无人机高光谱影像中应用最佳模型得到冬小麦最终的长势监测图,以期为相关人员提供参考。  相似文献   

18.
以广西壮族自治区柳州市鹿寨县平山镇九简村的柑橘(Citrus reticulata Blanco)为研究对象,通过地面人工实测判别柑橘黄龙病(HLB)植株,协同无人机低空遥感获取标定柑橘种植地块的高光谱影像;计算柑橘健康植株和HLB植株冠层感兴趣区域(ROI)的平均光谱,并对初始光谱进行异常数据剔除、平滑去噪和光谱变换,得到原始光谱、一阶微分光谱(FDR)和二阶微分光谱(SDR);采用主成分分析法对其进行降维后,构建支持向量机(SVM)分类模型。结果表明,通过选择400~1 000 nm的特征波段,使用ArcGIS软件提取样本平均光谱,其全波段一阶微分光谱的训练集和测试集分类准确率分别达87.41%、84.67%,SVM分类模型参数分别为C=35.39、γ=0.01;使用ENVI软件提取样本平均光谱,其全波段一阶微分光谱的训练集和测试集分类准确率分别达92.39%、96.43%,SVM分类模型参数分别为C=5.06、γ=1.02。无人机低空遥感高光谱监测柑橘HLB具有可行性,可快速识别柑橘种植园地的HLB植株。  相似文献   

19.
[目的]为火龙果长势监测、估产、植株病害高光谱遥感诊断提供可靠依据.[方法]通过原始光谱、光谱不同形式变换和不同植被指数对火龙果植株冠层、果、枝、花等不同部位进行识别,运用主成分分析法提取火龙果不同部位的特征波段,构建BP神经网络模型,分析火龙果不同部位的波段特征,检验BP神经网络模型识别准确率.[结果]在波长400~...  相似文献   

20.
基于高光谱遥感的农作物分类研究进展   总被引:3,自引:1,他引:2  
【目的】农作物类型识别是农作物面积、长势监测与产量预测的重要前提。及时、准确地获取农作物类型、空间分布以及种植面积对制定农业政策、促进社会经济发展和保障国家粮食安全具有重要意义。近年来,高光谱遥感凭借光谱分辨率高、光谱信息丰富等优点,已广泛应用于农作物制图中。【方法】文章归纳了高光谱遥感应用于农作物分类的研究进展,总结了国内外农作物分类常用的高光谱数据源,并分析了各种数据源的适用范围。梳理了农作物高光谱遥感分类方法,讨论了各种分类方法的优缺点。【结果】现有农作物高光谱遥感分类研究存在一些不足:(1)机载高光谱影像光谱分辨率高,但影像监测面积小,不适合大区域农作物面积提取研究;(2)星载高光谱影像监测面积较大,但空间分辨率较低,某些农作物面积提取实际应用中精度较低;(3)由于缺乏对农作物高光谱特征的研究,导致分类算法机理性不足,普适性较差。【结论】农作物高光谱遥感分类未来研究方向是:(1)丰富高光谱遥感监测的农作物类型;(2)提高高光谱影像的空间分辨率,实现农作物种植结构复杂、地块破碎地区的农作物分类研究;(3)进一步研究利用高光谱遥感进行农作物分类的机理和多源数据融合的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号