首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
几株高效溶磷菌株对不同磷源溶磷活力的比较   总被引:3,自引:0,他引:3  
在液体培养条件下,研究了4株溶磷菌株(Bmp5、Bmp6、Bmp7和Fmp9)对不同磷源溶解能力的差异并与荧光假单孢菌As1.867和巨大芽孢杆菌As1.223进行了比较,探讨了菌株组合培养对溶磷活力的影响。结果表明,4株菌株对磷酸钙、磷酸铝、磷酸氢钙溶解能力明显高于磷酸铁和卵磷脂。以磷酸钙为磷源时,Fmp9的溶磷量比As1.867和As1.223分别高出约92%和48%;而以磷酸铝为磷源时,As1.223的溶磷量明显高于其他菌株;在磷酸氢钙为磷源的条件下,Bmp6为优势菌株,溶磷量高达785.51mg/L。对比研究发现,Bmp5、Bmp6、Bmp7及Fmp9的优势磷源分别为卵磷脂、磷酸氢钙、磷酸铝和磷酸钙。组合培养表明,Bmp5+Fmp9和Bmp6+Fmp9较单株菌的溶磷量有所增加,为较好的组合。试验得到的溶磷微生物配方已经应用于生物复合肥料的研究,并进行了盆栽实验,得到了较好的效果。该研究可为土壤生物肥料工业的微生物学研究提供借鉴。  相似文献   

2.
草酸青霉菌HB1溶磷能力及作用机制   总被引:2,自引:0,他引:2  
一些功能微生物具有溶磷能力且同一菌株对不同难溶性磷酸盐的溶解能力存在差异。该研究以草酸青霉菌HB1为研究对象,通过固体平板培养试验、摇瓶培养试验和土壤培养试验系统研究了不同磷源(磷酸钙、磷矿粉、磷酸铁、磷酸铝)与氮源(铵态氮、硝态氮)供应下HB1溶磷能力及其作用机制,并验证了其在高、低不同磷水平土壤中的溶磷能力。结果表明,接种HB1的不同磷源培养基上均有溶磷圈出现,根据溶磷圈直径/菌落直径初步确定HB1溶解磷酸钙的能力较强;摇瓶培养试验表明供试磷源为磷酸钙、磷酸铁时HB1发酵液中有效磷含量为884、265 mg/L(铵态氮),或945、206 mg/L(硝态氮),其溶磷能力不受氮源形态影响;磷矿粉为磷源时,HB1发酵液中有效磷含量可达199 mg/L(供应铵态氮),为硝态氮供应的7.14倍;而磷酸铝为磷源时,HB1发酵液中有效磷含量为120 mg/L(供应硝态氮),为铵态氮供应的3.29倍;此外,供应铵态氮条件下,HB1对难溶性磷酸盐的溶解能力与介质中pH值呈显著的负相关关系。HB1接种于不同磷水平的土壤中培养21 d,在低磷和高磷土壤中HB1均能有效定殖且增加了土壤有效磷含量,比不接菌对照分别增加45.00%和14.17%。综上,草酸青霉菌HB1对磷酸钙和磷矿粉的溶磷效果较好,并通过分泌氢质子酸解含磷矿物实现溶磷作用,且HB1在低磷土壤中溶磷能力较强。  相似文献   

3.
钟传青  黄为一 《土壤学报》2005,42(2):286-294
比较了不同种类的微生物菌株对不同种类难溶性磷酸盐及磷矿粉的溶解能力。结果发现,细菌、酵母、霉菌在解磷方面均有一定作用,发挥着不同优势。磷酸钙、磷酸铝、磷酸铁等难溶性磷酸盐容易被酵母菌、霉菌溶解,而磷矿粉容易被巨大芽孢杆菌溶解,显示不同微生物与不同磷源的亲和溶解能力不同。不同种类磷酸盐或磷矿粉对微生物磷酸酶活力的影响不同,贫磷条件可以促进酸性和碱性磷酸酶活性的增加  相似文献   

4.
为提高磷素利用率,从花生根际土壤样品中筛选到一株溶磷能力强的菌株B1-A,结合菌落形态特征和ITS rDNA序列分析将其鉴定为黑曲霉(Aspergillus niger)。菌株B1-A的不同接种量(1%,3%,5%)在两种难溶性磷酸盐(FePO4,AlPO4)培养液的溶磷量和pH随时间动态变化表明溶磷量均与pH呈显著负相关,B1-A的溶磷量与接种量、培养时间、磷矿粉浓度有关,实验结果表明菌株B1-A在接种量为3%~5%、培养时间168 h、云南磷矿粉浓度为3 g L-1、江西磷矿粉浓度为5 g L-1时溶磷效果较好。菌株B1-A对磷酸三钙、磷酸铝、磷酸铁、磷矿粉有较强的溶解能力,最高溶磷量分别为418.7、942.3、242.2、177.4 mg L-1,有望为开发高效红壤微生物磷肥提供种质资源。  相似文献   

5.
一株溶磷细菌的分离、鉴定及其溶磷特性研究   总被引:4,自引:0,他引:4  
孙珊  黄星  范宁杰  冯昭中  李会会  李顺鹏 《土壤》2010,42(1):117-122
从作物根际土壤样品中筛选到一株溶 P 能力强的菌株 GJT-1,结合生理生化指标和16S rDNA 序列分析鉴定其为假单胞菌(Pseudomonas sp.).菌株 GJT-1 对磷酸三钙、磷酸铝、磷酸铁有一定的溶解能力,28℃培养到第 3 天对磷酸三钙液体培养基的溶 P 量可达 224.51 mg/L.该菌对开阳磷矿粉和宜昌磷矿粉的溶 P 量分别为 194.25 mg/L 和 120.59 mg/L.通过扫描电镜观察到接种活菌处理的磷矿粉表面凹凸且有黏性物质附着,表明菌株 GJT-1 可利用磷矿粉.  相似文献   

6.
  【目的】  磷在土壤中易于固定,且向有效态的转化能力弱。研究两株高效溶磷菌活化土壤中的磷素的能力,为提高红壤供磷能力提供指导。  【方法】  以溶磷菌株伯克霍尔德菌 (Burkholderia) XQP35 (P35)、拉乌尔菌 (Raoultella) SQP80 (P80) 为研究对象,以磷酸铝、磷酸铁、植酸钙和卵磷脂替代液体NBRIP培养基中的磷酸钙作为磷源处理,测定两个菌株对不同磷源的溶解能力。将液体NBRIP培养基的pH分别调至4、5、6、7和8,再接种菌株并培养24、48、72、96、120、144 h,测定液体培养基中的溶磷量。以玉米为试材进行盆栽试验,设定不接种菌剂 (CK) 和接种P35、P80、商品化菌剂 (EM) 4个处理。在玉米生长20、40、60、80、100天后,取样分析玉米生长、土壤有效磷含量,并分析了第100天时的土壤中性和酸性磷酸酶活性,以及土壤中不同形态磷的含量。  【结果】  1) 菌株P35、P80对难溶性磷酸钙和植酸钙均有较强的溶解能力,对磷酸铁、磷酸铝和卵磷脂磷的溶解能力较弱。P35在培养24 h内及P80在培养48 h内,其溶磷量在不同培养基pH处理间差异显著,随着培养时间的延长,不同pH处理间的溶磷量逐渐接近,且溶磷量达到一定水平后不再增加。2) 土壤接种菌株P35、P80对玉米表现出良好的促生效果,提高了玉米植株地径、株高、吸磷量和干物质积累量,干物质量分别较CK增加32%、36% (P < 0.05)。3) 在土壤接种菌株20~100天内,P35和P80处理的土壤有效磷含量始终高于CK和EM处理,有时差异可达显著水平 ( P < 0.05);而EM处理的土壤有效磷含量始终与CK没有显著差异。土壤接种菌株100天后,3个菌株处理的土壤酸性磷酸酶、中性磷酸酶活性与CK均无显著差异,但对土壤中不同形态磷含量影响不同。P80处理显著提高H2O-Pi含量,P35显著提高了NaOH-Pi、NaHCO3-Pi含量,且P80的磷活化系数也显著高于CK。  【结论】  溶磷菌株P35、P80对环境pH的适应能力较强,对磷酸钙和植酸钙有较强的溶解能力。P35活化磷的速度快,可能在土壤中引起磷的再固定,最终表现为提高了土壤无机磷中的NaOH-Pi和NaHCO3-Pi。菌株P80对磷的活化速度较P35慢,但其活化的磷主要表现为H2O-Pi含量的提高,更有利于玉米的吸收利用。  相似文献   

7.
磷细菌P17对不同来源磷矿粉的溶磷作用及机制   总被引:22,自引:1,他引:22  
钟传青  黄为一 《土壤学报》2004,41(6):931-937
比较了一株磷细菌P17对来自多种产地磷矿粉的溶解能力。通过摇瓶试验、扫描电镜观察提出磷细菌P17对不同来源磷矿粉生物风化的证据 ,选出了P17最适合作用的磷矿粉类型。从摇瓶试验看出 ,磷细菌P17对来源于黄麦岭、黄金卡黄的变质岩型磷矿粉有较好的溶解能力。经过P17长达 70d的溶解 ,磷矿粉的难溶磷逐渐被P17菌株溶解下来。连续 10次接种培养后 ,P17菌株能溶解黄麦岭磷矿粉全磷的81 0 2 % ;而对于黄金卡黄磷矿粉 ,P17溶解了全磷总量的 78 97%。试验结果表明磷细菌P17能够提高黄麦岭磷矿粉和黄金卡黄磷矿粉的持续利用率。另外 ,培养 7d后 ,磷细菌P17能够在以黄麦岭磷矿粉、黄金卡黄磷矿粉为唯一磷源的发酵液中产生 3 10mmolL-1的挥发性有机酸 ,同时能分别产生 4 0 5mmolL-1、5 1 1mmolL-1的难挥发性有机酸。经过气相色谱检测 ,磷细菌P17能够产生柠檬酸、琥珀酸、乳酸以及乙酸等有机酸 ,可能螯合磷矿粉中的金属离子 ,使磷游离出来。初步探讨了磷细菌P17的溶磷机制  相似文献   

8.
红壤溶磷菌的筛选及溶磷机制   总被引:4,自引:0,他引:4  
采用以磷酸铝为磷源的蒙金娜(PVK)液体培养基研究了从红壤土中筛选出的4种溶磷菌的溶磷效果,选出其中的优势菌株B1,并对其溶磷机理做出初步探讨。结果表明,所筛选出的4株溶磷菌在液体培养条件下均有显著的溶磷效果,其中菌株B1在培养4 d后有效溶磷量最大,达到292.8 mg L-1。各处理培养液pH在培养期间均有显著下降,pH从7.0下降至3.2~4.7。高效液相色谱测定发现,各菌株培养液中有机酸的种类与含量随培养时间变化而不同,其中菌株B1主要分泌草酸和苹果酸,培养1 d后有机酸总量可达到5 mmol L-1;通过添加有机酸对磷酸铝活化的试验表明,分泌有机酸溶磷仅是菌株B1溶磷机制之一,可能还存在其他溶磷机制。菌株B1生长的适宜pH范围为5~9,最适培养温度为30℃,100 ml三角瓶的最适装液量为30~40 ml。经鉴定,菌株B1与苏云金芽孢杆菌有99.9%的相似性。  相似文献   

9.
杨翠红  邱慧珍  李亚娟 《土壤通报》2007,38(6):1240-1242
以磷矿粉为唯一磷源,在液体摇床培养条件下,研究了溶磷细菌Jm170对不同性质磷矿粉的溶磷作用。结果表明,在本试验条件下,细菌Jm170对四种供试磷矿粉均有较好的溶磷作用,且溶磷能力表现出明显选择性:品位愈高,溶磷能力愈强;磷矿中钙含量愈高,铁、铝含量愈低,溶磷能力愈强。  相似文献   

10.
为缓解不溶性磷酸盐累积造成的盐碱土壤板结问题,从江苏滨海盐碱土壤中筛选到一株具有较强溶磷能力的真菌菌株SM-1,并初步鉴定为Apophysomyces sp.,同时考察了木醋液对该菌生长及溶磷效果的影响。结果表明,木醋液的添加能够显著影响菌株SM-1的生长,添加量为0.1%的木醋液是其最适宜的生长浓度。菌株SM-1对不同磷源有着不同的分解能力,其中对磷酸三钙的分解能力最佳,培养基中水溶磷含量由93 mg·L~(-1)提高到246.9 mg·L~(-1)。木醋液对供试磷源没有分解效果,但添加木醋液则能够显著提高菌株对磷矿粉的分解能力,培养基中水溶磷含量由79 mg·L~(-1)提高到115.3 mg·L~(-1),而对磷酸三钙的分解能力与单独接入菌株SM-1的效果相当。这预示着菌株SM-1与木醋液混合使用在改善盐碱化土壤肥力方面具有很好的应用前景。  相似文献   

11.
Rock phosphate (RP) is a low efficiency P fertilizer that is directly applied to the soil and can be solubilized by phosphate-solubilizing microorganisms (PSMs) in fermentation or soil conditions. This study investigated dynamic solubilization of 2 concentrations of rock phosphate in a liquid culture with different dosages of glucose by two fungal isolates,Aspergillus niger P39 and Penicillium oxalicum P66, from soybean and wheat rhizosphere soil. Although during the 20 day culture period A. niger P39 had a stronger ability to acidify the culture media than P. ozalicum P66, soluble P concentrations at glucose dosages of 30 and 50 g L^-1 with RP of 15 g L^-1 in the culture solution were much higher by P. oxalicum P66. The greater effectiveness of P. oxalicum P66 compared to A. niger P39 in the solubilization of RP was strongly associated with the production of organic acids. This study suggested that for RP solubilization the type rather than the concentration of PSM-produced organic acids was more important.  相似文献   

12.
Literature analysis and chemical considerations of biological phosphate solubilization have shown that the commonly used selection factor for this trait, tricalcium phosphate (TCP), is relatively weak and unreliable as a universal selection factor for isolating and testing phosphate-solubilizing bacteria (PSB) for enhancing plant growth. Most publications describing isolation of PSB employed TCP. The use of TCP usually yields many (up to several thousands per study) isolates “supposedly” PSB. When these isolates are further tested for direct contribution of phosphorus to the plants, only a very few are true PSB. Other compounds are also tested, but on a very small scale. These phosphates (P), mainly Fe-P, Al-P, and several Ca-P, are even less soluble than TCP in water. Because soils greatly vary by pH and several chemical considerations, it appears that there is no metal-P compound that can serve as the universal selection factor for PSB. A practical approach is to use a combination of two or three metal-P compounds together or in tandem, according to the end use of these bacteria—Ca-P compounds (including rock phosphates) for alkaline soils, Fe-P and Al-P compounds for acidic soils, and phytates for soils rich in organic P. Isolates with abundant production of acids will be isolated. This approach will reduce the number of potential PSB from numerous isolates to just a few. Once a potential isolate is identified, it must be further tested for direct contribution to P plant nutrition and not necessarily to general growth promotion, as commonly done because promotion of growth, even by PSB, can be the outcome of other mechanisms. Isolates that do not comply with this general sequence of testing should not be declared as PSB.  相似文献   

13.
Low availability of phosphorus(P) is a major constraint for optimal crop production, as P is mostly present in its insoluble form in soil. Therefore,phosphate-solubilizing bacteria(PSB) from paddy field soils of the Indo-Gangetic Plain, India were isolated, and their abundance was attempted to be correlated with the physicochemical characteristics of the soils. Ninety-four PSB were isolated on Pikovskaya's agar medium, and quantitative phosphate solubilization was evaluated using NBRIP medium. The isolates solubilized P up to a concentration of 1 006 μg mL~(-1) from tricalcium phosphate with the secretion of organic acids. These isolates were identified by 16 S rRNA gene sequence comparison, and they belonged to Gammaproteobacteria(56 isolates),Firmicutes(28 isolates), Actinobacteria(8 isolates), and Alphaproteobacteria(2 isolates). Phylogenetic analysis confirmed the identification by clustering the isolates in the clade of the respective reference organisms. The correlation analysis between PSB abundance and physicochemical characteristics revealed that the PSB population increased with increasing levels of soil organic carbon, insoluble P, K~+, and Mg~(2+). The promising PSB explored in this study can be further evaluated for their biofertilizer potential in the field and for their use as potent bio-inoculants.  相似文献   

14.
This study determined the cell density in the field and the biological activity of culturable phosphate-solubilizing microorganisms (PSMs) present in the Elaeis guineensis Jacq. rhizosphere at two locations in a commercial plantation. Promising isolates found in two soils under different agronomic management conditions were selected. We first calculated the cell density of cultivable PSMs grown in SRS medium (Sundara-Rao and Sinha, 1963) supplemented with the insoluble phosphate sources Ca3(PO4)2, AlPO4, and FePO4. Twenty-two bacteria, ten filamentous fungi, and eight yeast isolates were found. The 16 isolates with the clearest P solubilization halo in Petri dishes were selected to estimate their P solubilization potential in SRS medium with Ca3(PO4)2. No solubilization activity was registered using AlPO4 or FePO4 as the P sources. Ten of the isolates presented solubilization efficiencies between 20 and 82%. Some of these isolates showed high percentages of identity with the 16S and ITS rDNA sequences of the genera Aspergillus, Penicillium, Klebsiella, Burkholderia, and Staphylococcus according to the NCBI and EzTaxon-e databases. The solubilization activity of the isolates was associated with a decrease in the pH and the release of organic acids, such as gluconic, citric, succinic, and acetic acids. Gluconic acid was mainly released by the genera Aspergillus and Penicillium, and these isolates also showed the highest solubilization activities (82 and 80%, respectively). Therefore, these isolates were selected as the most promising isolates present in the oil palm rhizosphere for phosphate solubilization.  相似文献   

15.
黑土区高效溶磷真菌筛选及其溶解磷矿粉效果的研究   总被引:6,自引:1,他引:6  
黑土区高效溶P真菌筛选及其溶解磷矿粉效果的试验结果表明 ,溶P真菌溶P效果高于溶P细菌 ,且其溶P性状稳定。曲霉菌“P39”、“P37”和青霉菌“P6 6”、“P1”溶P效果高于其他供试菌 ,菌株之间溶P活性与培养液pH值和有机酸含量间不存在必然相关性 ,推测不同菌株间溶P活性差异与菌株产生的有机酸种类和数量有关  相似文献   

16.
Abstract

The natural phenomenon of defoliation of mature soybean leaves onto the soil surface provides a large quantity of easily decomposable organic matter in the form of leaf litter. The potential of decomposing soybean leaf litter (SLL) to solubilize phosphorus (P) from two low‐grade rock phosphates, Jhabua rock phosphate (JRP) and Hirapur rock phosphate (HRP), alone or amended with pyrite, was assessed in an incubation study. Decomposing SLL solubilized P both from JRP and HRP and concurrently increased water‐soluble as well as organic P contents. Amending rock phosphates with pyrite (in a 1∶2 P to S ratio) promoted P solubilization. Approximately 71 to 92% of the total solubilized P was converted to organic P. The rate of P solubilization increased with SLL decomposition time, reaching its peak at 60 days with rock phosphates alone and at 90 days with pyrite‐blended rock phosphates. The maximum P solubilization (as a percentage of total P added) with different rock phosphates and their mixtures with pyrite followed this order: HRP (11.4%)<HRP+pyrite (16.5%)<JRP (20.2%)<JRP+pyrite (26.5%). These findings clearly suggest that the decomposing SLL has the potential to solubilize P from the otherwise insoluble low‐grade rock phosphates and can offer a natural opportunity for direct use of rock phosphates in the cropping systems that have soybean as a component crop.  相似文献   

17.
 The phosphate-solubilizing potential of the rhizosphere microbial community in mangroves was demonstrated when culture media supplemented with insoluble, tribasic calcium phosphate, and incubated with roots of black (Avicennia germinans L.) and white [Laguncularia racemosa (L.) Gaertn.] mangrove became transparent after a few days of incubation. Thirteen phosphate-solubilizing bacterial strains were isolated from the rhizosphere of both species of mangroves: Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, Paenibacillus macerans, Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, Enterobacter taylorae, Enterobacter asburiae, Kluyvera cryocrescens, Pseudomonas stutzeri, and Chryseomonas luteola. One bacterial isolate could not be identified. The rhizosphere of black mangroves also yielded the fungus Aspergillus niger. The phosphate-solubilizing activity of the isolates was first qualitatively evaluated by the formation of halos (clear zones) around the colonies growing on solid medium containing tribasic calcium phosphate as a sole phosphorus source. Spectrophotometric quantification of phosphate solubilization showed that all bacterial species and A. niger solubilized insoluble phosphate well in a liquid medium, and that V. proteolyticus was the most active solubilizing species among the bacteria. Gas chromatographic analyses of cell-free spent culture medium from the various bacteria demonstrated the presence of 11 identified, and several unidentified, volatile and nonvolatile organic acids. Those most commonly produced by different species were lactic, succinic, isovaleric, isobutyric, and acetic acids. Most of the bacterial species produced more than one organic acid whereas A. niger produced only succinic acid. We propose the production of organic acids by these mangrove rhizosphere microorganisms as a possible mechanism involved in the solubilization of insoluble calcium phosphate. Received: 21 April 1999  相似文献   

18.
Phosphate-solubilizing microorganisms play an important role in plant nutrition by enhancing phosphorus (P) availability to roots through converting the insoluble phosphates into soluble ions. We isolated phosphate-solubilizing bacteria (PSB) from acidic soil (Ultisols) in the field from the layer of 0–150 mm at a tea garden located at 28°38′26″ N and 116°24′27″ E. The capacity of bacterial isolates to solubilize mineral phosphate was tested on aluminum phosphate (AlPO4) in liquid medium. Among these PSB, isolate B1 (identified as Bacillus thuringiensis) exhibited the maximum P-solubilizing ability and was particularly efficient at solubilizing AlPO4 (up to 321 mg L?1) in vitro. The isolate B1 was inoculated to an acidic soil to study its effect on phosphate solubilization and growth of peanuts (Arachis hypogeae). The Olsen-P in the tested soil increased from 14.7 to 23.4 mg kg?1, with solubilization of 16.4 mg kg?1 soil of Occluded-P after 14-day incubation. The inoculation by B1 significantly increased plant height (from 37.7 to 45.7 cm), number of branches (from 34.0 to 52.7 per plant), hundred-seed weight (from 42.1 to 46.9 g) and crude protein content (from 243.5 to 268.2 g kg?1 dry weight). The phosphate-solubilizing B. thuringiensis strain B1 showed potential as a biological phosphorus fertilizer.  相似文献   

19.
Two of 187 fungal isolates (Aspergillus niger 1B and 6A) displaying superior phosphate (P) solubilization and hydrolytic enzyme secretion were studied using P forms of calcium (Ca-P), iron (Fe-P), and aluminum (Al-P). Phosphate solubilization in a sucrose-basal salt (SB) broth was increased and pH decreased by both isolates. In Ca-P medium, solubilization for 6A was approximately 322 μg P mL−1 and pH decreased by 4.2 units to 2.3 in 72 h. However, when pH value of the SB broth was lowered to 2.5 using HCl, 65.3  ±  0.4 μg mL−1 of P was released from Ca-P, whereas trace amounts of P were released from Fe-P and Al-P. Both isolates displayed enhanced Al-P solubilization using NH4Cl rather than KNO3 as the N source; final pH values were not significantly different. With Ca-P, gluconic acid was predominantly produced by 1B and 6A, whereas oxalic acid predominated with Fe-P and Al-P. Addition of gluconic acid (final concentration of 8.5 μmol mL−1) to Ca-P-supplemented SB lowered pH (2.9) and solubilized phosphate (146.0 ± 1.0 μg mL−1). Similarly, addition of oxalic acid (final concentration 6.6 μmol mL−1) to Ca-P- and Fe-P-amended media solubilized P (60.2 ± 0.9 and 21.6 ± 2.1 μg mL−1, respectively), although these quantities were significantly lower than those detected in unamended SB. The presence of unidentified P solubilized compound(s) in the dialyzed (MW>500) supernatant warrants further study. In pot experiments, significant increases in plant (Brassica chinensis Linn.) dry weight and N and P contents were observed with the addition of isolate 6A, when a small amount of organic fertilizer together with either rock phosphate (South African apatite) or Ca-P served as the main P sources.  相似文献   

20.
Ten phosphate-solubilizing bacterial strains belonging to genera Pseudomonas, Burkholderia, Enterobacter, Serratia, Klebsiella, and Aeromonas were tested for mineral phosphate solubilization activity in Pikovskaya's broth using different phosphate sources at four temperatures (15, 25, 35, and 45 οC). Dicalcium and tricalcium phosphate were solubilized more effectively (≥1000 mg L?1) than ferric and rock phosphate (≥100 mg L?1) and 35 °C was found to be the optimum temperature. Although Klebsiella and Aeromonas spp. are well known for their dinitrogen (N2)–fixing ability, to the best of our knowledge, this is the first report of inorganic phosphate solubilization by Klebsiella terrigena and Aeromonas vaga. Interestingly, A. vaga BAM-77 is the most efficient strain at solubilizing inorganic phosphorus (P) even in the presence of 8% sodium chloride (NaCl) at pH 10. These findings indicate that all four strains are efficient P solubilizers under variable conditions of temperature, pH, and P source and thus can be recommended for P fertilization in different soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号