首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
保幼激素(juvenile hormone, JH)可以调控昆虫滞育,保幼激素环氧水解酶(juvenile hormone epoxide hydrolase, JHEH)是调节保幼激素代谢的关键酶之一。为探索JHEH在七星瓢虫Coccinella septempunctata L.滞育中的调控作用,利用RT-PCR和RACE技术克隆获得七星瓢虫JHEH全长基因,命名为Csjheh(GenBank登录号:MH932586),该基因cDNA全长2 077 bp,开放阅读框(ORF)1 380 bp,编码459个氨基酸,预测蛋白质分子量为51.39 kD,理论等电点(pI)为8.79。疏水性分析结果显示该基因具有典型环氧水解酶的N末端疏水结构。氨基酸序列比对结果表明,Csjheh与中欧山松大小蠹、赤拟谷盗、丽蝇蛹集金小蜂、内华达古白蚁保幼激素环氧水解酶同源性达到64.24%。利用实时荧光定量PCR技术研究其时空表达模式,结果表明Csjheh基因在七星瓢虫成虫初羽化阶段表达量较高,滞育诱导条件下表达量呈先下降后上升的趋势,滞育60 d时与初羽化阶段接近。本研究结果对揭示JHEH参与JH的调控作用,进而调控昆虫滞育提供了理论参考。  相似文献   

2.
A cyclodiene epoxide notable for its susceptibility to enzymic epoxide ring hydration in living organisms has been used to investigate potential inhibitors of the enzyme involved (epoxide hydrase), which is mainly microsomal, but distinct from the microsomal oxidases. Compounds with varying degrees of inhibitory efficiency include insect hormone analogues containing epoxide rings, certain other epoxides, methylenedioxybenzene-derived insecticide synergists, tri-o-cresyl phosphate, triphenyl phosphate and the microsomal oxidase inhibitor SKF 525A. The simple epoxides 1,l,l-trichloro-2,3-epoxy-propane and l,2-epoxy-l,2,3,4-tetrahydronaphthalene are the best inhibitors of this enzyme in blowfly pupal homogenates.  相似文献   

3.
An epoxide hydrolase purified from midgut microsomes of southern armyworm (Spodoptera eridania) larvae exhibited high activity toward monosubstituted epoxides (1,2-epoxyoctane, 1,2-epoxypropane, and styrene oxide) and lower activity toward cis-1,2-disubstituted epoxides (cyclohexene oxide, and the cyclodienes HEOM, HCE, and chlordene epoxide). Trisubstituted epoxides (2-methyl-2,3-epoxyheptane and JH-1) as well as several cyclodiene insecticides (dieldrin, endrin, endo-epoxyaldrin, and anti-heptachlor epoxide) were refractory to enzymatic attack. It is concluded that both lipophilic and steric factors dictate the substrate specificity of the enzyme. With cyclohexene oxide the enzyme yields the 1R, 2R enantiomer of the trans-diol. The purified enzyme is inhibited by several epoxides and mixed-function oxidase inhibitors and the potency of 3,3,3-trichloro-1,2-epoxypropane and sodium picrylsulfonate suggest the importance of electronic factors in the inhibitory mechanism. Studies with specific amino acid modifiers suggest the presence of an essential lysine or histidine residue at the active site and indicate that the enzyme lacks a metal ion requirement and an essential cysteine residue. The purified enzyme has a molecular weight of 46,000 daltons and amino acid analysis and immunochemical studies show it to be very similar to, but not identical with, the epoxide hydrolase from mammalian liver microsomes.  相似文献   

4.
The metabolism of R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene] by rat hepatocytes has been analyzed and compared with that of juvenile hormone I [methyl-(E,E)-cis-10,11-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate] under identical conditions. The metabolism of R-20458 is characterized by the predominance of NADPH-dependent cytochrome P-450 and epoxide hydrolase reactions; whereas, JH I is metabolized mainly by carboxylesterase, epoxide hydrolase, and glutathione S-transferases. The metabolites of R-20458 have been shown to correspond to (E)-6,7-epoxy-1-(4-hydroxyethylphenoxy)-3,7-dimethyl-2-octene; (E)-6,7-epoxy-1-(4-acetylphenoxy)-3,7-dimethyl-2-octene; (E)-6,7-dihydroxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene; and, (E)-6,7-dihydroxy-1-(4-acetylphenoxy)-3,7-dimethyl-2-octene. The production of the α-hydroxyethyl, p-acetylphenoxy, and acetylphenoxy-6,7-diol metabolites is markedly inhibited by SKF 525-A. No dramatic effects are produced by diethylmaleate and 1,2-epoxy-3,3,3-trichloropropane.  相似文献   

5.
Juvenile hormone (JH) is an insect-specific hormone that regulates molting and metamorphosis. Hence, JH signaling inhibitors (JHSIs) and activators (JHSAs) can be used as effective insect growth regulators (IGRs) for pest management. In our previous study, we established a high-throughput screening (HTS) system for exploration of novel JHSIs and JHSAs using a Bombyx mori cell line (BmN_JF&AR cells) and succeeded in identifying novel JHSIs from a chemical library. Here, we searched for novel JHSAs using this system. The four-step HTS yielded 10 compounds as candidate JHSAs; some of these compounds showed novel basic structures, whereas the others were composed of a 4-phenoxyphenoxymethyl skeleton, the basic structure of several existing JH analogs (pyriproxyfen and fenoxycarb). Topical application of seven compounds to B. mori larvae significantly prolonged the larval period, suggesting that the identified JHSAs may be promising IGRs targeting the JH signaling pathway.  相似文献   

6.
A range of compounds were tested as inhibitors of the enzyme epoxide hydrase, using a cyclodiene epoxide (HEOM) as substrate. Rat and rabbit liver microsomes and pupal homogenates of the blowfly (Calliphora erythrocephala) and the yellow mealworm (Tenebrio molitor) were compared as sources of the enzyme. Only minor differences were found between the four enzyme preparations, when considering I50 values and percentage inhibition at standard concentration. The simple epoxide 1,1,1-trichloropropane-2,3-epoxide and two glycidyl ethers p-nitrophenyl glycidyl ether and p-ethylphenyl glycidyl ether tended to have lower I50 values (1.8×10?6 to 8.0×10?5M) than triphenyl phosphate and SKF 525A (4.5×10?5 to 1.4×10?4M). Triphenyl phosphate and SKF 525A were competitive inhibitors for both the rat and Tenebrio enzymes. The only clear difference found between these two epoxide hydrase preparations was with respect to their inhibition by 1,1,1-trichloropropane-2,3-epoxide, which was an uncompetitive inhibitor with the rat enzyme, but showed kinetics of mixed inhibition with the insect preparation.  相似文献   

7.
Juvenile hormone (JH) agonists constitute a subclass of insect growth regulators and play important roles in insect pest management. In this work, a multi-step virtual screening program was executed to find novel JH agonists. A database of 5 million purchasable compounds was sequentially processed with three computational filters: (i) shape and chemical similarity as compared to known JH-active compounds; (ii) molecular docking simulations against a Drosophila JH receptor, methoprene-tolerant; and (iii) free energy calculation of ligand–receptor binding using a modified MM/PBSA (molecular mechanics/Poisson–Boltzmann surface area) protocol. The 11 candidates that passed the three filters were evaluated in a luciferase reporter assay, leading to the identification of a hit compound that contains a piperazine ring system (EC50=870 nM). This compound is structurally dissimilar to known JH agonists and synthetically easy to access; therefore, it is a promising starting point for further structure optimization.  相似文献   

8.
House fly (Musca domestica L.) microsomes prepared from larvae, pupae, or adults contain three enzyme system which can metabolize juvenile hormone I: an esterase, an oxidase, and epoxide hydrase. The presence of the oxidase is indicated by the increased metabolism when microsomes are supplemented with NADPH and by the occurrence of additional metabolites tentatively identified as products arising from oxidation of the 6, 7 double bond. Additional evidence of the activity of the oxidase system is the increased metabolism of juvenile hormone I by the NADPH-dependent system from phenobarbital-induced insects, by inhibition of the oxidation by piperonyl butoxide and carbon monoxide, and by the greater metabolism of the hormone by microsomes from insecticide-resistant (high oxidase) strains. In vivo studies of house fly adults treated with 3H-labeled juvenile hormone I reveal a pattern of metabolism similar to that seen during NADPH-supplemented in vitro metabolism. The three enzymes have somewhat different patterns of activity during the larval stage of the house fly, juvenile hormone esterase and epoxide hydrase beginning at a high level of activity in the young larvae while the juvenile hormone oxidase is low at this stage. In the late larval stage all three enzymes show increased activity followed by declines during the pupal stage and further increases in the adult stage. Comparison of in vitro enzyme levels of the house fly, flesh fly (Sarcophaga bullata Parker), and blow fly [Phormia regina (Meigen)] showed that, although the enzymes were present in the latter two species, their activity on a per insect basis was considerably less than that of the house fly.  相似文献   

9.
The enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is crucial to insect development and reproduction, as revealed by the sterilising properties of some specific inhibitors of it. In the present paper, we study the sterilising effects of a number of HMG-CoA reductase inhibitors on the German cockroach, Blattella germanica (L). The inhibitors tested were naringenin, lovastatin, mevastatin, simvastatin, atorvastatin and fluvastatin. The first two compounds were ineffective or scarcely effective as HMG-CoA reductase inhibitors. The most active compounds in vivo were fluvastatin and atorvastatin, followed by simvastatin and mevastatin. They were equally ranked when tested as HMG-CoA reductase inhibitors in the B germanica embryonic derived cell line UM-BGE-1. This suggests that this cell line may be an appropriate tool for testing HMG-CoA reductase inhibitors and so to predict their properties as insect sterilising agents with insecticide potential.  相似文献   

10.
几丁质酶 (EC 3.2.1.14) 可催化几丁质降解生成几丁寡糖,在几丁质代谢通路中发挥着重要作用,在昆虫、真菌和线虫等有害生物的生长发育过程中不可或缺。以几丁质酶为潜在靶标,有望开发出具有全新作用机制的新型农药品种。近年来,由于噻唑烷酮类化合物被报道具有包括几丁质酶抑制活性的多种农用生物活性,其合成方法受到广泛关注。本文以亚洲玉米螟几丁质酶 (OfCht) 为代表,对几丁质酶结构特点,典型糖类、肽类、虚拟筛选和天然产物源酶抑制剂,以及几丁质酶与抑制剂的结合方式进行了概要性综述,着重针对噻唑烷-4-酮、2-硫代噻唑烷-4-酮和噻唑-2,4-二酮3种噻唑烷酮类化合物的合成方法和农用生物活性研究进行了归纳总结,进而对噻唑烷酮类化合物在几丁质酶抑制活性方面的应用进行展望,以期为基于昆虫几丁质酶独特结构特点进行合理设计和发现新型噻唑烷酮类几丁质酶抑制剂用于未来农业害虫防治提供参考。  相似文献   

11.
Enzymatic epoxide hydration, a significant mechanism in the regulation of insect development and in the detoxication of certain cyclodiene insecticides, has been investigated in vitro in the blowfly, Calliphora erythrocephala, the southern armyworm, Prodenia eridania, and the Madagascar cockroach, Gromphadorhina portentosa. Characterization of the hydrases involved in cyclodiene epoxide hydration has been achieved using as substrate a cyclodiene insecticide (HEOM) susceptible to enzymatic epoxide ring cleavage. The enzymes, which are microsomal but different from the oxidases, are inhibited in varying degrees by microsomal oxidase inhibitors as well as by certain epoxides, esterase inhibitors and compounds with reported juvenilizing ability. Group-bulk and electronegative effects are important requirements for HEOM-hydrase inhibition, the best inhibitor of the system being 1,1,1-trichloro-2,3-epoxypropane. Differences between the structural requirements for HEOM-hydrase inhibition and those for inhibition of the epoxide hydrase responsible for the degradation of juvenile hormone are discussed.  相似文献   

12.
保幼激素环氧水解酶(juvenile hormone epoxide hydrolase,JHEH)是调控保幼激素(juvenile hormone,JH)滴度的重要降解酶。本文在黏虫体内克隆得到一条具有EHN环氧水解酶超家族结构域的保幼激素环氧水解酶MsJHEH2基因cDNA序列(GenBank登录号:MT802192),长度1533 bp,开放阅读框(ORF)为1389 bp,编码462个氨基酸,推测分子量和等电点分别为52.42 kDa和7.07。表达模式分析发现,MsJHEH2在黏虫各个龄期与组织中均有表达,其中在蛹期和中肠中表达量最高。RNA干扰处理4龄幼虫6 h后的基因沉默效率最高,为64.86%,此时黏虫体内JH滴度上升为对照的1.58倍。该基因沉默后对黏虫无明显致死作用,但导致其蛹历期延长、羽化率降低。本研究表明MsJHEH2可以通过调节JH含量进而影响黏虫生长发育进程。  相似文献   

13.
A series of 27 substituted thio-1,1,1-trifluoropropanones was synthesized by reacting the corresponding thiol with 1,1,1-trifluoro-3-bromopropanone. The resulting sulfides were screened as inhibitors of hemolymph juvenile hormone esterase and α-naphthyl acetate esterase activity of the cabbage looper, Trichoplusia ni, electric eel acetylcholinesterase, bovine trypsin, and bovine α-chymotrypsin. The presence of the sulfide bond increased the inhibitory potency on all of the enzymes tested when compared with compounds lacking the sulfide. In general, the compounds proved to be poor inhibitors of chymotrypsin and moderate inhibitors of trypsin. By varying the substituent on the sulfide, good inhibitory activity was obtained on α-naphthyl acetate esterase, acetylcholinesterase, while some of the compounds proved to be extremely powerful inhibitors of juvenile hormone esterase. The most powerful inhibitor tested was 3-octylthio-1,1,1-trifluoro-2-propanone, with an I50 of 2.3 × 10?9M on JH esterase. This compound showed a molar refractivity similar to that of the JH II backbone, was not toxic to T. ni, and was moderately toxic to mice, with a 48-hr LD50 of >750 mg/kg. It effectively delayed pupation when applied to prewandering larvae of T. ni, as expected for a JH esterase inhibitor. Thus, some members of this series are promising for evaluating the role of JH esterase in insect development. The series also indicates that, by varying the substituent on the sulfide moiety, potent “transition-state” inhibitors can be developed for a wide variety of esterases and proteases.  相似文献   

14.
Insect juvenile hormone (JH) mimics (JHMs) are known to have ovicidal effects if applied to adult females or eggs. Here, we examined the effects of exogenous JHMs on embryonic development of the bean bug, Riptortus pedestris. The expression profiles of JH early response genes and JH biosynthetic enzymes indicated that JH titer was low for the first 3 days of the egg stage and increased thereafter. Application of JH III skipped bisepoxide (JHSB3) or JHM on Day 0 eggs when JH titer was low caused reduced hatchability, and the embryos mainly arrested in mid- or late embryonic stage. Application of JHMs on Day 5 eggs also resulted in an arrest, but this was less effective compared with Day 0 treatment. Interestingly, ovicidal activity of synthetic JHMs was much lower than that of JHSB3. This study will contribute to developing novel insecticides that are selective among insect species.  相似文献   

15.
抑咽侧体素 (ASTs) 是一类由昆虫脑神经细胞分泌,通过作用于咽侧体进而抑制保幼激素 (JH) 合成与释放的昆虫神经肽。因其具有调控昆虫生长、发育和生殖等生理过程的功能,被认为是一类潜在的害虫控制剂。本文在简介了昆虫神经肽在害虫防治中的应用基础上,综述了昆虫神经肽抑咽侧体素的发现、类别和功能,并结合本研究组的工作,重点介绍抑咽侧体素及其类似物的结构修饰和优化、活性构象及构效关系研究,同时也介绍了抑咽侧体素及其类似物的受体和作用机制研究进展。最后,展望了该领域的未来发展趋势,期望为新的生态友好型农药的研发提供一定的参考作用。  相似文献   

16.
Two metyrapone analogues, 2-(l-imidazolyl)-2-methyl-l-phenyl-l-pro-panone (A-phenyl-B-imidazolyl-metyrapone; III) and 2-methyl-l-phenyl-2-{1,2,4-triazol-l-yl)-l -propanone (A-phenyl-B-triazolyl-meiyrapone; IV) as well as two cyclopropylamine derivatives. N-cyclopropyl-4-icrt-butylbenzylamine (V) and N-cyclopropyl-4-(3,7-dimethyl-7-methoxy-octyloxy)benzamide (cyclopropylamine acylated with a JH analogue acid of known structure; VI) were synthesized and evaluated in biological assays for JH biosynthesis on cockroach, Diploptera punctata corpora allata and egg growth in adult cockroach as well as for mixed function oxidase activities, i.e. epoxidation of aldrin to dieldrin and O-demethylation of 7-methoxy-4-methylcoumarin to 7-hydroxy-4-methylcoumarin on microsomes from housefly, Musca domestica, abdomen and from cockroach midgut. Compound VI was a good in-vitro inhibitor of JH biosynthesis, but it had significantly lower activities in the assays for inhibition of microsomal cytochrome P-450. Compound IV and metyrapone had moderate activity as inhibitors of oocyte growth. Compounds III, IV and V were more potent inhibitors of housefly aldrin epoxidation than metyrapone and they inhibited the enzyme activity by almost 100% at 02mM, while in cockroach midgut microsome assay metyrapone was more potent than these three compounds.  相似文献   

17.
In many countries, the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is one of the most important insect pests of wheat. Chemical control of E. integriceps is not efficient making it essential to find other control methods. Plant α-amylase inhibitors expressed as transgenes have emerged as a promising way of controlling insect pests and several crop species expressing transgenic amylase inhibitors have been shown to be resistant to certain insect pest. Here we report inhibition of salivary α-amylases of E. integriceps by semi-purified proteinaceous α-amylase inhibitors from Triticale (TAI). A dose dependent trend of inhibition of the enzyme was observed using TAI with an I50 value of 0.79 μg of TAI. At the highest concentration of the inhibitor used here, we found 87% inhibition of amylase activity. The inhibitory activity was maximal at pH at 5.0, which is in accordance with the pH optimum of the salivary gland enzymes. Kinetic studies of enzyme-inhibitor interaction revealed a kind of partial mixed inhibition with an apparent inhibitory constant value (Ki[app]) of 1.1 μg of TAI against salivary α-amylase in the assay medium. In gel inhibition assays showed that all isoforms of salivary glands α-amylase were sensitive to the TAI, although to different degrees. Moreover, the effectiveness of TAI was retained in different stages of pre-oral and oral digestion of E. integriceps, although some inhibitory activity was lost, possibly by the action of the insect proteases. These findings indicate that TAI shows promise for use in the management of this pest. To the best of our knowledge, this is the first study of inhibitor-insect digestive enzymes interaction, based on the insect feeding strategy and digestion process.  相似文献   

18.
Various detoxifying enzymes, including microsomal oxidases, glutathione S-transferases, esterases, epoxide hydrolase, and DDT-dehydrochlorinase, were assayed in adult worker bees (Apis mellifera L.) using midguts as the enzyme source. A cell-free system was used for all enzyme assays, except that microsomal oxidases required intact midgut because of the inhibitor encountered. Midgut microsomal preparations contained mainly cytochrome P-420, the inactive form of cytochrome P-450, which may explain the low microsomal oxidase activity in microsomes. All enzymes studied were active, suggesting that the high susceptibility of honey bees to insecticides is not due to low detoxication capacity. Sublethal exposure of honey bees to various insecticides had no effect on these enzyme activities, with the exception of permethrin which significantly stimulated the glutathione S-transferase, and malathion, which significantly inhibited the α-naphthylacetate esterase and carboxylesterase.  相似文献   

19.
δ-Aminolevulinic acid (ALA) esterase(s) is an enzyme or a family of enzymes that regenerate ALA from ALA esters by hydrolysis. These enzyme(s) are highly active in cancer cells. As a consequence ALA esters have been used to advantage in ALA-dependent photoradiation therapy, since ALA esters translocate better to sites of metabolism in cancer cells and tissues than free ALA. In this work, it is shown that ALA esterase(s) also occur in insect and plant tissues, but are less active than in cancer cells. In plant cells ALA esterase activity is observed in the cytosol as well as in the plastids where most of the activity is observed in the plastid stoma. The ALA esterase activity appears to be sensitive to the nature of the esterifying alcohol as well as to components of the incubation medium. The observed lower activity of ALA ester conversion to tetrapyrroles in insect and plant cells, in comparison to free ALA, suggests that the use of ALA esters in photodynamic insecticidal and herbicidal applications may not be as advantageous as their use in cancer photodynamic therapy treatments. It is proposed that ALA esterase(s) may be involved in the mobilization of sequestered and esterified ALA. Esterification and sequestering of excess ALA may be visualized as a mean of cellular detoxification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号