首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kisspeptin neurons in the arcuate nucleus (ARC), which co-express neurokinin B (NKB) and dynorphin A, are termed KNDy neurons. These neurons are candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. The central and peripheral administration of NKB or its receptor (NK3R) agonist evokes GnRH pulse generator activity and the subsequent pulsatile GnRH/luteinizing hormone (LH) secretion. However, the mechanism responsible for neural activation of the GnRH pulse generator in goats is unclear. We conducted electrophysiological and histochemical experiments to test the hypothesis that KNDy neurons receive NKB and that the signal is transmitted bilaterally to a population of KNDy neurons. Bilateral electrodes aimed at a cluster of KNDy neurons were inserted into the ovariectomized goat ARC. We observed the GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys). The unilateral administration of NKB or vehicle in the close vicinity of KNDy neurons under simultaneous MUA recording from both sides revealed that only NKB evoked MUA volley(s) immediately after administration. The timing of the MUA volley(s) evoked on the ipsilateral side was synchronized to that on the contralateral side. The double-labeled ISH for KISS1 and TACR3, which encode kisspeptin and NK3R, respectively, revealed that most KNDy neurons co-expressed TACR3. Therefore, NKB could directly stimulate KNDy neurons, following which the stimulatory signal is immediately transmitted to the entire population of KNDy neurons via connection with their fibers. This mechanism helps synchronize burst activity among KNDy neurons, thereby generating neural signals that govern pulsatile GnRH secretion.  相似文献   

2.
Neurons in the arcuate nucleus (ARC) that concomitantly express kisspeptin, neurokinin B (NKB) and dynorphin A are termed KNDy neurons and are likely candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. Our hypothesis is that KNDy neurons are functionally and anatomically interconnected to generate discrete neural signals that govern pulsatile GnRH secretion. Our goal was to address this hypothesis using electrophysiological and anatomical experiments in goats. Bilateral electrodes targeting KNDy neurons were implanted into ovariectomized goats, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys), was measured. Spontaneous and pheromone- or senktide (an NKB receptor agonist)-induced MUA volleys were simultaneously recorded from both sides of the ARC. An anterograde tracer, biotinylated dextran amine (BDA), was also injected unilaterally into the ARC of castrated male goats, and the distribution of fibers containing both BDA and NKB was examined using dual-labeling histochemistry. The results showed that MUA volleys, regardless of origin (spontaneous or experimentally induced), occur simultaneously between the right and left sides of the ARC. Tract tracing indicated that axons projecting from NKB neurons in the ARC were directly apposed to other NKB neuronal cells located bilaterally in the ARC. These results demonstrate that GnRH pulse generator activity occurs synchronously between both sides of the ARC in goats and that KNDy neurons are bilaterally interconnected in the ARC via NKB-containing fibers. Taken together, the results suggest that KNDy neurons form a neuronal circuit to synchronize burst activity among KNDy neurons and thereby generate discrete neural signals that govern pulsatile GnRH secretion.  相似文献   

3.
The time course of GnRH pulse generator activity and plasma concentrations of energy substrates and insulin were simultaneously observed in female goats during 4-day fasting and subsequent refeeding in the presence or absence of estrogen for a better understanding of the mechanism of energetic control of gonadotropin secretion in ruminants. The GnRH pulse generator activity was electrophysiologically assessed with the intervals of characteristic increases in multiple-unit activity (MUA volleys) in the mediobasal hypothalamus. In estradiol-treated ovariectomized (OVX+E2) goats, the MUA volley intervals increased as fasting progressed. Plasma concentrations of non-esterified fatty acid and ketone body increased, while those of acetic acid and insulin decreased during fasting. The MUA volley intervals and plasma concentrations of those metabolites and insulin were restored to pre-fasting levels after subsequent refeeding. In ovariectomized (OVX) goats, changes in plasma metabolites and insulin concentrations were similar to those in OVX+E2 goats, but the MUA volley intervals were not altered. The present results demonstrated that fasting suppressed GnRH pulse generator activity in an estrogen-dependent manner. Changes in plasma concentrations of energy substrates and insulin during fasting were associated with the GnRH pulse generator activity in the presence of estrogen, but not in the absence of the steroid in female goats.  相似文献   

4.
Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats.  相似文献   

5.
Metastin/kisspeptin, the KiSS-1 gene product, has been identified as an endogenous ligand of GPR54 that reportedly regulates GnRH/LH surges and estrous cyclicity in female rats. The aim of the present study was to determine if metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges. We demonstrated that preoptic area (POA) infusion of the anti-rat metastin/kisspeptin monoclonal antibody blocked the estrogen-induced LH surge, indicating that endogenous metastin/kisspeptin released around the POA mediates the estrogen positive feedback effect on GnRH/LH release. Metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) may be responsible for mediating the feedback effect because the percentage of c-Fos-expressing KiSS-1 mRNA-positive cells to total KiSS-1 mRNA-positive cells was significantly higher in the afternoon than in the morning in the anteroventral periventricular nucleus (AVPV) of high estradiol (E(2))-treated females. The percentage of c-Fos-expressing metastin/kisspeptin neurons was not different between the afternoon and morning in the arcuate nucleus (ARC). Most of the KiSS-1 mRNA expressing cells contain ERalpha immunoreactivity in the AVPV and ARC. In addition, AVPV KiSS-1 mRNA expressions were highest in the proestrous afternoon and lowest in the diestrus 1 in females and were increased by estrogen treatment in ovariectomized animals. On the other hand, the ARC KiSS-1 mRNA expressions were highest at diestrus 2 and lowest at proestrous afternoon and were increased by ovariectomy and decreased by high estrogen treatment. Males lacking the surge mode of GnRH/LH release showed no obvious cluster of metastin/kisspeptin-immunoreactive neurons in the AVPV when compared with high E(2)-treated females, which showed a much greater density of these neurons. Taken together, the present study demonstrates that the AVPV metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges in female rats.  相似文献   

6.
Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-,Kiss1- and Tac2 (NKB gene)-expressing cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.  相似文献   

7.
The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from –4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats.  相似文献   

8.
Androgen induces production of male effect pheromone in female goats   总被引:1,自引:0,他引:1  
Previously we showed that the primer pheromone responsible for the "male effect" was produced in specific skin regions of castrated male goats by androgen treatments. In the present study, we examined whether androgen can also induce production of the male effect pheromone in female goats. Capsules containing dihydrotestosterone (DHT) or testosterone (T) were subcutaneously implanted into six ovariectomized (OVX) goats for 28 days. Small skin samples were collected from the head and rump regions, and the pheromone activity of their ether extracts was examined using a bioassay that monitors the electrophysiological manifestation of the hypothalamic gonadotropin-releasing hormone pulse generator as multiple-unit activity. Behaviors of OVX goats towards ovary-intact estrous goats were also examined before and at the end of DHT or T treatment. Before androgen treatment, neither the head nor rump skin samples in OVX goats showed pheromone activity. DHT treatment induced pheromone activity in the head skin sample of six OVX goats and in the rump skin sample of two OVX goats. Similar results were obtained by T treatment. In addition, OVX goats treated with T showed masculine-type sexual behaviors such as courtship and mounting behaviors towards the estrous goats. These results demonstrate that androgen is capable of inducing primer pheromone activity in the female and suggest that the synthesis pathway of the male effect pheromone exists in both sexes in the goat.  相似文献   

9.
A major constituent of the characteristic "goaty odor" 4-ethyl octanoic acid (4EOA) was previously shown to have no primer pheromone activity. This was also confirmed by our own bioassay system utilizing the recording technique of neural activity of the hypothalamic gonadotropin-releasing hormone pulse generator in goats. However, when the synthetic 4EOA solution was kept at room temperature for several months, primer pheromone activity appeared in the same solution. Headspace gas chromatography/mass spectrometry analysis revealed that there were several newly formed substances in addition to 4EOA samples with primer pheromone activity. These results suggest that 4EOA derived substance(s) but not 4EOA itself is(are) primer pheromone in goats.  相似文献   

10.
Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence in response to increased photoperiod during the late-winter into spring and renaissance during the late summer. The nonbreeding (anestrous) season is characterized by a reduction in the pulsatile secretion of GnRH from the brain, in part because of an increase in negative feedback activity of estrogen. Neuronal populations in the hypothalamus that produce kisspeptin and gonadotropin-inhibitory hormone (GnIH) appear to be important for the seasonal shift in reproductive activity, and the former are also mandatory for puberty onset. Kisspeptin cells in the arcuate nucleus (ARC) and preoptic area appear to regulate GnRH neurons and transmit sex-steroid feedback signals to these neurons. Moreover, kisspeptin expression in the ARC is markedly up-regulated at the onset of the breeding season, as too are the number of kisspeptin fibers in close apposition to GnRH neurons. The lower levels of kisspeptin seen during the nonbreeding season can be "corrected" by infusion of kisspeptin, which causes ovulation in seasonally acyclic females. The role of GnIH is less clear, but mounting evidence supports a role for this neuropeptide in the inhibitory regulation of both GnRH secretion and gonadotropin release from the pituitary gland. Contrary to kisspeptin, GnIH expression is markedly reduced at the onset of the breeding season. In addition, the number of GnIH fibers in close apposition to GnRH neurons also decreases during this time. Importantly, exogenous GnIH treatment can block both the pulsatile release of LH and the preovulatory LH surge during the breeding season. In summary, it is most likely the integrated function of both these neuropeptide systems that modulate the annual shift in photoperiod to a physiological change in fertility.  相似文献   

11.
Castrated goats were treated with dihydrotestosterone (DHT) for four weeks. Skin samples were collected from the head and the rump regions before and after the DHT treatment. The primer pheromone activities of these samples were assessed neurophysiologically by recording electrophysiological manifestations of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator activity. Pheromone activity was detected in both the head and rump skin samples following the DHT treatment, although the development of sebaceous glands was limited to the head region. Taken together with our previous finding that testosterone treatment results in the appearance of primer pheromone activity in the skin sample of the head region but not of the rump region. these observations suggests that the regional difference of pheromone production would be ascribed to intrinsic expression levels of 5alpha-reductase, an enzyme converting testosterone to DHT.  相似文献   

12.
The aims of the present study were to clarify the effect of kisspeptin‐10 (Kp10) on the secretion of luteinizing hormone (LH) and testosterone (T) in pre‐pubertal and post‐pubertal male ruminants. Four male goats (Shiba goats) were given an intravenous (i.v.) injection of Kp10 (5 µg/kg body weight (b.w.)), gonadotoropin‐releasing hormone (GnRH, 1 µg/kg b.w.), or 2 mL of saline as a control at the ages of 3 (pre‐pubertal) and 6 (post‐pubertal) months. A single i.v. injection of Kp10 significantly stimulated the release of LH and T in both groups. The area under the response curve (AUC) of LH for a 60‐min period after the i.v. injection of Kp10 was significantly greater in the pre‐pubertal goats (P < 0.05). The AUC of T for a 120 min period post‐injection did not differ between the two age groups. A single i.v. injection of GnRH also significantly stimulated the release of LH and T in both groups (P < 0.05). The secretory pattern of LH and T in response to GnRH resembled that in response to Kp10. These results show that the LH‐releasing response to Kp10 is greater in pre‐pubertal than post‐pubertal male goats. They also show that Kp10, as well as GnRH, is able to stimulate the release of T in male goats.  相似文献   

13.
Puberty in mammals is timed by an increase in gonadotropin-releasing hormone (GnRH) secretion. Previous studies have shown involvement of the two neuropeptides, kisspeptin and neurokinin B (NKB), in controlling puberty onset. Little is known about the role of the other key neuropeptide, dynorphin, in controlling puberty onset, although these three neuropeptides colocalize in the arcuate kisspeptin neurons. The arcuate kisspeptin neuron, which is also referred to as the KNDy neuron, has recently been considered to play a role as an intrinsic source of the GnRH pulse generator. The present study aimed to determine if attenuation of inhibitory dynorphin-kappa-opioid receptor (KOR) signaling triggers the initiation of puberty in normal developing female rats. The present study also determined if stimulatory NKB-neurokinin 3 receptor (NK3R) signaling advances puberty onset. Female Wistar-Imamichi rats were weaned and intraperitoneally implanted with osmotic minipumps filled with nor-binaltorphimine (nor-BNI), a KOR antagonist, or senktide, a NK3R agonist, at 20 days of age. Fourteen days of intraperitoneal infusion of nor-BNI or senktide advanced puberty onset, manifested as vaginal opening and the first vaginal estrus in female rats. Frequent blood sampling showed that nor-BNI significantly increased luteinizing hormone (LH) pulse frequency at 29 days of age compared with vehicle-treated controls. Senktide tended to increase this frequency, but its effect was not statistically significant. The present results suggest that the inhibitory input of dynorphin-KOR signaling plays a role in the prepubertal restraint of GnRH/LH secretion in normal developing female rats and that attenuation of dynorphin-KOR signaling and increase in NKB-NK3R signaling trigger the onset of puberty in female rats.  相似文献   

14.
Puberty is associated with an increase in gonadotropin secretion as a result of an increase in gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is considered to play a key role in puberty onset in many mammalian species, including rodents, ruminants and primates. The present study aimed to determine if changes in hypothalamic expression of the KISS1 gene, encoding kisspeptin, are associated with the onset of puberty in pigs. The animals (n=4 in each group) were perfused with 4% paraformaldehyde at 0, 1, 2, 3 and 4 months old, as prepubertal stages, and at 5 months old, as the peripubertal stage, following each blood sampling. KISS1 gene expressions in coronal sections of brains were visualized by in situ hybridization. Plasma luteinizing hormone (LH) was measured by radioimmunoassay. KISS1 mRNA signals were observed in the arcuate nucleus (ARC) at all ages examined without any significant difference in the number of KISS1-expressing cells, indicating that the KISS1 gene is constantly expressed in the ARC throughout pubertal development in pigs. The plasma LH concentration was the highest in 0-month-old piglets and significantly decreased in the 1- and 2 month-old groups (P<0.05), suggesting a developing negative feedback mechanism affecting gonadotropin release during the prepubertal period. Considering the potent stimulating effect of kisspeptin on gonadotropin release in prepubertal pigs, kisspeptin secretion rather than kisspeptin synthesis may be responsible for the onset of puberty in pigs.  相似文献   

15.
The hypothalamo‐pituitary‐gonadal (HPG) axis is the regulatory system for reproduction in mammals. Because secretion of gonadotropin‐releasing hormone (GnRH) into the portal vessels is the final step at which the brain controls gonadal activities, the GnRH neuronal system had been thought to be central to the HPG axis. A newly discovered neural peptide, kisspeptin, has opened a new era in reproductive neuroendocrinology. As shown in a variety of mammals, kisspeptin is a potent endogenous secretagogue of GnRH, and the kisspeptin neuronal system governs both the pulsatile GnRH secretion that drives folliculogenesis, spermatogenesis and steroidogenesis, and the GnRH surge that triggers ovulation in females. The kisspeptin neuronal system is therefore considered a master player in the central control of mammalian reproduction, and kisspeptin and related substances could therefore be valuable for the development of novel strategies for the management of fertility in farm animals. To this end, the present review aimed to summarize the current research on kisspeptin signaling with a focus on domestic animals such as sheep, goats, cattle, pigs and horses.  相似文献   

16.
The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17β (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.  相似文献   

17.
Photoperiod modulates reproduction in goats. We tested the hypothesis that the excitatory glutamatergic tone is reduced in the photoinhibited goat. The objectives of this study were to determine the effect of photoperiod and glutamatergic stimulation on LH, GH, and testosterone (T) secretion in goat bucks. Eight mature, intact bucks were used in two simultaneous 4 x 4 Latin square designs. Variables were two photoperiod regimens (short day; SD, 10 h light:14 h dark, n = 4; vs long day; LD, 16 h light:8 h dark, n = 4) and four doses of N-methyl-D-L-aspartate (NMA; 0, 1, 2 and 4 mg/kg BW, i.v.). Venous blood was obtained for 2 h before and after NMA injection, followed by GnRH injection and then a final 1 h of sampling. Injection of NMA increased (P < 0.002) LH secretion within 20 min. This increase was sustained for 120 min, but the response was most pronounced in LD goats. The increase in mean LH was associated with a concomitant dose-dependent increase in pulse frequency (P < 0.006). However, NMA treatment had no effect (P > 0.10) on LH pulse amplitude. The release of LH after injection of GnRH was not affected by photoperiod. Exposure of bucks to LD reduced T secretion relative to that of SD bucks (P < 0.01). However, GH secretion was enhanced in LD bucks (P< 0.001). The response of GH to NMA was dependent on photoperiod history. A highly significant immediate and sustained increase (P < 0.001) was observed in LD but not in SD bucks within 10 min. Overall, a dose-dependent increase (P < 0.01) in T secretion was stimulated by NMA in both LD and SD bucks. These results indicate that NMA receptors may be involved in the regulation of LH, GH, and testosterone secretion in the goat. Furthermore, length of day influences GH secretion in the goat and NMA receptor activation had divergent effects on the secretion of this hormone.  相似文献   

18.
This study tested the hypothesis that the effects of the opiate antagonist naloxone on GnRH (and LH) secretion is affected by photoperiod length and testosterone (T) concentrations. The effect of infusing naloxone on GnRH and LH pulse patterns was determined in four groups of orchidectomized sheep: long day (LD) photoperiod treated with T, LD without T (LDC), short day photoperiod (SD) with T, SDC (n = 5-7/group). Hypophyseal-portal and jugular blood samples were collected at 10 min intervals for 4 h before and 4 h during naloxone infusion (1 mg/kg/h). Neither photoperiod nor T affected either mean GnRH or LH whereas naloxone (P < 0.01) increased both. LD photoperiod (P < 0.01), T (P < 0.01) and naloxone (P < 0.01) all increased LH pulse amplitude whereas only naloxone increased GnRH pulse amplitude (P < 0.01). There was an interaction (P < 0.01) between steroid and naloxone on LH, but not GnRH, pulse amplitude. Both LD photoperiod and T increased both LH and GnRH (P < 0.01) interpulse-interval (IPI). Naloxone decreased GnRH IPI (P < 0.01). The LH/GnRH pulse amplitude ratio was (P < 0.02) increased by T--likely a secondary response to the T-induced increase in IPI. These results are interpreted as showing that in the ram the endogenous opiate peptides regulate both GnRH pulse frequency and amplitude, but that their specific role is modulated by photoperiod and T. These results do not support the concept that the opiate peptides are the primary mediators of the negative feedback effects of T.  相似文献   

19.
Kisspeptin is a key molecule that stimulates gonadotropin secretion via release of gonadotropin-releasing hormone (GnRH). In the present study, our aim was to investigate whether kisspeptin has stimulatory effects on follicular development via GnRH/gonadotropin secretion in cows. Japanese Black beef cows were intravenously injected with full-length bovine kisspeptin [Kp-53 (0.2 or 2 nmol/kg)] or vehicle 5 days after they exhibited standing estrus (Day 0). In cows injected with Kp-53 at 2 nmol/kg, the follicular sizes of the first dominant follicles increased on Day 6 and thereafter. Ovulation of the first dominant follicle occurred in 1 out of 4 cows treated with Kp-53 at 2 nmol/kg. Injection of Kp-53 at 2 nmol/kg increased the concentration of plasma luteinizing hormone (LH) but not follicle-stimulating hormone, over a 4-h period following injection in all cows. The present study suggests that administration of full-length kisspeptin causes LH secretion, which is sustained for a few hours, and it is capable of stimulating follicular development and/or ovulation.  相似文献   

20.
Gonadotropin‐releasing hormone (GnRH) is a key molecule in the control of reproduction in mammals. It is generally thought that the secretion of GnRH into the pituitary portal vessels is governed by two distinct neural mechanisms: the pulsatile and surge mode centers. The former is called the GnRH pulse generator, and this neural substrate plays a role as the master regulator of the reproductive function. An electrophysiological technique for monitoring the neural activity of the GnRH pulse generator has been established in the Shiba goat. The central actions of several neuropeptides have been assessed using this system. Results suggest that several neuropeptides including neuropeptide Y, cholecystokinin‐octapeptide and melanocortins are involved in the regulation of the GnRH pulse generator activity in the goat. Each input of those neuropeptides likely represents a unique mechanism conveying specific information about changes in the internal and external environments such as olfactory signals, nutrition, stress, and steroidal milieu, to the GnRH pulse generator. Further elucidations of actions of neurotransmitters on the GnRH pulse generator may serve for better understanding of the neuroendocrine control of reproduction in the ruminant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号