首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrestrial carbon dynamics have been vastly modified because of changes in atmospheric composition, climate, and land-use. However, few studies provide a complete analysis of the factors and interactions that affect carbon dynamics over a large landscape. This study examines how changes in atmospheric composition (CO2, O3 and N deposition), climate and land-use affected carbon dynamics and sequestration in Mid-Atlantic temperate forests during the 20th century. We modified and applied the PnET-CN model, a well established process-based ecosystem model with a strong foundation of ecosystem knowledge from experimental studies. We validated the model results using the U.S. Forest Inventory and Analysis (FIA) data. Our results suggest that chronic changes in atmospheric chemistry over the past century markedly affected carbon dynamics and sequestration in Mid-Atlantic temperate forests, while climate change only had a minor impact although inter-annual climatic variability had a far more substantial effect. The NPP response to a century of chronic change in atmospheric composition at the regional scale was an increase of 29%, of which, 14% was from elevated CO2, 17% from N deposition, 6% from the interaction between CO2 and N deposition, and minus 8% from tropospheric ozone. Climate change increased NPP by only 4%. Disturbed forests had 6% lower NPP than undisturbed forests after seven decades. Regrowing forests after harvesting and natural disturbances had much greater capacity for sequestering carbon than undisturbed old-growth forests even though the newer forests had slightly lower net primary production (NPP). The modeling results indicated that N deposition was a stronger force than elevated CO2 for increasing NPP and fast turnover tissues, while elevated CO2 favored more sustainable carbon storage and sequestration. The model results are consistent with various experiments and observations and demonstrate a powerful approach to integrate and expand our knowledge of complex interactive effects of multiple environmental changes on forest carbon dynamics.  相似文献   

2.

A process-based model was used to simulate biomass production of Norway spruce under both current climate and climate change scenarios. The model was parameterized for Nordmoen in south-east Norway using real climate data for the period 1987-1989. The model was applied to predict the biomass production responses to three climate change scenarios. The results showed that net primary production (NPP) increased by 7% under an elevated annual mean air temperature of 4°C from the current 10.1 t dry mass ha -1 yr -1 . A doubled current ambient CO 2 concentration significantly increased NPP by 36%. The scenario of both elevated temperature and elevated CO 2 concentration led to an increase in the NPP of 49%, higher than the sum of the two effects acting singly. The results also showed that forest production responses to climate change depend on the conditions of climate used for reference.  相似文献   

3.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   

4.
The results of EFIMOD simulations for black spruce (Picea mariana [Miller]) forests in Central Canada show that climate warming, fire, harvesting and insects significantly influence net primary productivity (NPP), soil respiration (Rs), net ecosystem production (NEP) and pools of tree biomass and soil organic matter (SOM). The effects of six climate change scenarios demonstrated similar increasing trends of NPP and stand productivity. The disturbances led to a strong decrease in NPP, stand productivity, soil organic matter (SOM) and nitrogen (N) pools with an increase in CO2 emission to the atmosphere. However the accumulated NEP for 150 years under harvest and fire fluctuated around zero. It becames negative only at a more frequent disturbance regime with four forest fires during the period of simulation. The results from this study show that changes in climate and disturbance regimes might substantially change the NPP as well as the C and N balance, resulting in major changes in the C pools of the vegetation and soil under black spruce forests.  相似文献   

5.
ABSTRACT

Climate change affects plant phenology, spatial distribution, and even extinction of vulnerable species. Dipterocarpus turbinatus, locally known as garjan, is a valuable but vulnerable native tree species of Bangladesh whose spatial distribution under future climate change scenarios is not fully understood. The aim of this study was to examine the effects of present and future climatic scenarios on spatiotemporal distribution of D. turbinatus. We used maximum entropy species distribution modeling to perform the present and future habitat suitability of garjan under different climate scenarios. The representative concentration pathways (RCP) 2.6 and 8.5 were considered for bioclimatic variables from the Global Climate Model – Hadley Global Environment Model 2 Atmosphere-Ocean. The predictive accuracy of the model was more than 97% in both the training and test data. The prediction results suggest that compared to present areas (7624 km2) under moderate habitat class it will be 2755 km2 and 1239 km2, respectively, in 2050 and 2070 under RCP2.6 scenario and decreases more rapidly under RCP8.5 scenario. Besides, the prediction also indicates that the habitat of the species will shift toward the high altitudinal south-eastern corner of the country whereas local extinction might occur in the north-eastern part during 2070.  相似文献   

6.
大气C02浓度增加与林业发展对策   总被引:2,自引:0,他引:2  
作者在分析了CO2浓度增加对树木产生的种种影响的基础上,就林木育种、营林、森林经营和管理等方面提出了应采取的对策和措施,认为深入研究这些对策,将有助于我国林业的持续发展。  相似文献   

7.
Over the coming decades, climate change will increasingly affect forest ecosystem processes, but the future magnitude and direction of these responses is uncertain. We designed 12 scenarios combining possible changes in tree growth rates, decay rates, and area burned by wildfire with forecasts of future harvest to quantify the uncertainty of future (2010-2080), timber growing stock, ecosystem C stock, and greenhouse gas (GHG) balance for 67 million ha of forest in British Columbia, Canada. Each scenario was simulated 100 times with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Depending on the scenario, timber growing stock over the entire land-base may increase by 14% or decrease by 9% by 2080 (a range of 2.8 billion m3), relative to 2010. However, timber growing stock available for harvest was forecast to decline in all scenarios by 26-62% relative to 2010 (a range of 1.2 billion m3). Forests were an annual GHG source in 2010 due to an ongoing insect outbreak. If half of the C in harvested wood was assumed to be immediately emitted, then 0-95% of simulations returned to annual net sinks by 2040, depending on scenario, and the cumulative (2010-2080) GHG balance ranged from a sink of −4.5 Pg CO2e (−67 Mg CO2e ha−1) for the most optimistic scenario, to a source of 4.5 Pg CO2e (67 Mg CO2e ha−1) for the most pessimistic. The difference in total ecosystem carbon stocks between the most optimistic and pessimistic scenarios in 2080 was 2.4 Pg C (36 Mg C ha−1), an average difference of 126 Tg CO2e yr−1 (2 Mg CO2e yr−1 ha−1) over the 70-year simulation period, approximately double the total reported anthropogenic GHG emissions in British Columbia in 2008. Forests risk having reduced growing stock and being GHG sources under many foreseeable scenarios, thus providing further feedback to climate change. These results indicate the need for continued monitoring of forest responses to climatic and global change, the development of mitigation and adaptation strategies by forest managers, and global efforts to minimize climate change impacts on forests.  相似文献   

8.
In this work the aim was to determine how carbon sequestration in the growing stock of trees in Finland is dependent on the forest management and increased production potential due to climate change. This was analysed for the period 2003–2053 using forest inventory data and the forestry model MELA. Four combinations of two climate change and two management scenarios were studied: current (CU) and gradually warming (CC) climate and forest management strategies corresponding to different rates of utilisation of the cutting potential, namely maximum sustainable removal (Sust) or maximum net present value (NPV) of wood production (Max). In this analysis of Finland, the initial amount of carbon in the growing stock was 765 Mt (2,802 Tg CO2). At the end of the simulation, the carbon in the growing stock of trees in Finland had increased to 894 Mt (3,275 Tg CO2) under CUSust, 906 Mt (3,321 Tg CO2) under CUMax, 1,060 Mt (3,885 Tg CO2) under CCSust and 1,026 Mt (3,758 Tg CO2) under CCMax. The results show that future development of carbon in the growing stock is not only dependent on climate change scenarios but also on forest management. For example, maximising the NPV of wood production without sustainability constraints results, over the short term, in a large amount of wood obtained in regeneration cuttings and a consequent decrease in the amount of carbon in growing stock. Over the longer term, this decrease in the carbon of growing stock in regenerated forests is compensated by the subsequent increase in fast-growing young forests. By comparison, no drastic short-term decrease in carbon stock was found in the Sust scenarios; only minor decreases were observed.  相似文献   

9.
Daxing'anling is a key region for forest fire prevention in China.Assessing changes in fire risk in the future under multiple climatic scenarios will contribute to our understanding of the influences of climate change for the region and provide a reference for applying adaptive measures for fire management.This study analyzed the changes in fire weather indices and the fire season under four climate scenarios(RCP2.6,RCP4.5,RCP6.0,RCP8.5)for 2021–2050 using data from five global climate models together with observation data.The results showed that the analog data could project the average state of the climate for a given period but were not effective for simulating extreme weather conditions.Compared with the baseline period(1971–2000),the period 2021–2050 was predicted to have an increase in average temperature of 2.02–2.65 °C and in annual precipitation 25.4–40.3 mm,while the fire weather index(FWI) was predicted to increase by6.2–11.2% and seasonal severity rating(SSR) by5.5–17.2%.The DMC(Duff moisture code),ISI(initial spread index),BUI(build-up index),FWI and SSR were predicted to increase significantly under scenarios RCP4.5,RCP6.0,and RCP8.5.Furthermore,days with high or higher fire danger rating were predicted to be prolonged by 3–6 days,with the change in the southern region being greater under scenarios RCP4.5,RCP6.0,and RCP8.5.  相似文献   

10.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

11.
Forest gap models are important tools for assessing the impact of global climate change on forest dynamics of tree species composition and size structure. In this study, the FAREAST gap model was used to examine the response of forest dynamics on Gongga Mountain, which is located on the southeastern fringe of the Tibetan Plateau, under three climate change scenarios. The simulated results showed that the climax community of the deglaciation slash would be mixed species of Picea brachytyla, Tsuga chinensis, and Pinus densata under climate change scenarios, as opposed to the pure Abies fabri forest under the current climate. Climate change also drove replacement of Populus purdomiis by Betula utilis, which became the most abundant pioneer tree species on the deglaciation slash. Under scenarios of climate change, three responses of the four typical forests distributed between 2200 and 3580 m above sea level are observed, such as dieback of today’s forest at 2200 and 3150 m, gradual change of the species composition at 2780 m, and afforestation at 3580 m. It is worth noting that the scenarios of climatic change are of inherent uncertainty, in the same way as the formulation of the ecological factors used in the models. It is suggested that simulations not be interpreted as predictions of the future development of the forest, but as a means of assessing their sensitivity to climate change. It is concluded that mountainous forests are quite sensitive to climate change.  相似文献   

12.
为了研究气候变化情景下澳洲坚果在云南省的潜在适宜生境,采用当前和未来2050年RCP45气候变化情景下的19个生物气候因子及最大熵模型MaxEnt进行澳洲坚果生境模型构建,并进行适宜生境等级划分及空间变化特点分析。结果表明,2050年RCP45气候变化情景下3个等级的适宜生境大体上仍然保持与当前相似的空间分布格局,即高度适宜生境主要分布在云南西南部和南部,中、低度适宜生境分布在高度适宜生境区以北及以东区域。未来气候变化引起高度和中度适宜生境面积小幅度缩减(5.6%和2.4%),低度适宜生境面积增加22.5%。气候变化同时引起高度适宜生境景观格局破碎化。未来气候变化引起的澳洲坚果在云南高、中度适宜种植区总面积略有缩减,虽幅度不大,但空间分布上发生位移,且呈现破碎化趋势,产业规划时应考虑产业生命周期内气候变化造成对适宜生境迁移的影响。  相似文献   

13.
Change in potential natural vegetation (PNV) distribution associated with climate change due to the doubling atmospheric carbon dioxide (2×CO2) was estimated with a global natural vegetation mapping system based on the modified Kira scheme to the globe and the continents. With an input of widely-distributed global climate data, the system interpolates data onto a 1° latitude by 1° longitude grid over the globe, generates estimates of vegetation type, and produces a composite PNV map. The input climate data corresponding to the 1×CO2 and 2×CO2 consists of observations prior to AD 1958 at 2,001 weather stations worldwide and the 2×CO2 simulation output from the Japan Meteorological Research Institue's General Circulation Model, respectively. As a result of the simulated global warming, the vegetation zones expanded mostly from the tropics toward the poles. PNV area changed by 6.98 billion (G) ha of the total land area (15.04 Gha) and potential forest area corresponding to the closed forest and open forest (woodland) reached 9.74 Gha with the increase of 1.29 Gha. The potential forest area in Europe had obvious advantages to the climate change accompanied with the increase of actual forest area. Although the actual forest area has decreased in North America and Asia, the potential forest area in these continents also benefitted from the climate change. In the end, the remaining continents tended to bear the brunt of the climate change.  相似文献   

14.
根据净初级生产力(NPP)遥感估算模型,重建了中国东北样带(NECT)1982–2000 年间每月的 NPP 时空序列,分析了研究时段内 NPP 的时空格局特征及其与气候因子的关系。结果表明:(1)NECT 样带植被 NPP 的空间变化趋势同降水量的空间变化十分相似,由东到西逐渐降低,二者在空间上的相关性达到了 0.84(P<0.01),说明 NECT 样带的植被 NPP在空间分布上主要受水分趋动;(2)NECT 样带植被 NPP 的年际变化主要是由各年份夏季 NPP 的变化造成的,夏季对NECT 样带植被 NPP 的年际增长贡献率最大(67.6%),二者之间的相关性达到了 0.95(P<0.01);(3)NECT 样带的植被NPP 积累期主要发生在 5–9 月份,这 5 个月的 NPP 占了全年NPP 总量的 89.8%,整个夏季(6–8 月份)的 NPP 占了全年的 65.9%,冬季(12–2 月份)的 NPP 最低,基本为 0;(4)近 19 年来的气候变化促进了 NECT 样带的植被生长,从 1980年代到 1990 年代,NPP 显著增加,年代际相对增长率为 14.3%,平均年际绝对增长趋势为 4.6 gC m-2 a-1,相对增长趋势为 1.17%,这主要是由温度升高引起的。图 6 表 1 参 36。  相似文献   

15.
Positive and negative effects of climate change on forest growth have been observed in different parts of the world. However, much is still unknown about how forest structure and productivity might affect climate-growth relationships in the future. We examined the effects of climate, site quality, and competition on tree basal area growth of black pine (Pinus nigra Arn.) between 1964 and 2005 in 21 sites in the Iberian Peninsula. We used a new approach to simultaneously account for climate-growth relationships, inter-annual growth variability, and stand structural changes, by fitting a linear mixed effects model (LMEM) for basal area increments (BAI) using climate data, tree-ring chronologies, and repeated forest inventory data. This approach showed the potential to improve our understanding of climate effects on tree growth and to include climate in empirical forest growth models. We used the LMEM to make projections of BAI growth under two CO2 emission scenarios and two global circulation models (GCM). The main climate drivers for growth were precipitation from previous autumn to summer and winter temperature with a positive effect, and temperature in spring-summer which had a negative effect. Tree response to climate was modulated by stand conditions, tree competition, and productivity. The more productive stands showed greater ability to either maintain or increase growth at warmer spring-summer temperatures under different levels of autumn-summer precipitation. Growth projections showed important regional differences. In general, growth under future climate is predicted to decrease although moderate growth increases might be expected in the northern region for highly and moderately productive stands.  相似文献   

16.
In this study, the overall utility of forest management alternatives at the forest management unit level is evaluated with regard to multi-purpose and multi-user settings by a multi-criteria analysis (MCA) method. The MCA is based on an additive utility model. The relative importance of partial objectives of forest management (carbon sequestration, ground water recharge, biodiversity, and timber production) is defined in cooperation with stakeholders. The forest growth model 4C (Forest Ecosystems in a Changing Environment) is used to simulate the impact of six forest management strategies and climate on forest functions. Two climate change scenarios represent uncertainties with regard to future climatic conditions. The study is based on actual forest conditions in the Kleinsee management unit in east Germany, which is dominated by Scots pine (Pinus sylvestris L.) and oak (Quercus robur L. and Quercus petraea Liebl.) stands. First, there is an analysis of the impact of climate and forest management on forest functions. Climate change increases carbon sequestration and income from timber production due to increased stand productivity. Secondly, the overall utility of the management strategies is compared under the priority settings of different stakeholder groups. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate due to high biodiversity and carbon sequestration in the forest ecosystem. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions.  相似文献   

17.
CO_2和O_3浓度升高对森林生态系统影响的研究进展   总被引:1,自引:1,他引:0  
系统收集和整理了国内外关于CO2和O3复合胁迫对森林影响的研究,从两者的复合胁迫对森林树木的光合作用、地上部分生长、根系生长、土壤环境、种间竞争的影响等方面进行了阐述,并对该领域有待深入研究的方向进行了展望;提出应深入开展对植物地下水平和分子水平的研究,为解决全球气候变化对森林造成的影响提供借鉴,同时为生态系统的管理提供依据。  相似文献   

18.
气候变化情景下河北省3个优势树种适宜分布区预测   总被引:2,自引:0,他引:2  
【目的】探究河北省3个优势树种分布与气候因子的关系,并进行适宜分布区预测,以期为评估气候变化的影响及制定适宜未来气候变化的森林经营策略提供理论依据。【方法】依据河北省森林资源调查数据,选取华北落叶松、蒙古栎和油松这3个主要树种,采用ClimateAP气候模型生成当前及未来(2040—2069年和2070—2099年)与降水和温度相关的10个气候因子,利用MaxEnt生态位模型和基于3个气候变化情景(温室气体最低排放,RCP2.6;中度稳定排放,RCP4.5;高度排放,RCP8.5)的一致性预测,模拟3个树种当前和未来的潜在适宜分布区,并采取响应曲线分析主要气候因子对3个树种适宜分布区的影响。【结果】3个树种MaxEnt模型的受试者工作特征曲线下面积(AUC值)都大于0.85,具有较好的预测能力;当前3个树种主要适宜分布在燕山和太行山地区;影响3个树种分布的主导气候因子存在差异,华北落叶松主要受小于0℃年积温和湿季降水量的影响,蒙古栎则主要受最热月平均气温、Hargreaves水分亏缺和湿季降水量的影响,而最热月平均气温、湿季降水量、大于5℃年积温和年均气温是影响油松分布的主要气候因子;一致性预测表明,在2040—2069年,河北省华北落叶松分布面积明显扩大,蒙古栎分布面积变化较小,而油松分布面积显著缩小;在2070—2099年,3个树种的适宜分布面积都显著缩小,幅度均超过3%。【结论】随着气候变化,3个树种均有向高海拔地区迁移的趋势,但在经纬度方向上的分布变化不大。在未来3个树种的适宜分布区,采取人工手段(如造林)辅助树种扩散以适应气候变化,有利于提高森林生产力,构建健康稳定的森林生态系统。  相似文献   

19.
Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.  相似文献   

20.
The seasonal trend of plant carbon dioxide (CO2) sequestration is related to the photosynthetic activity, which in turn changes in response to environmental conditions. Great interest has turned to the CO2 sequestration (CS) potential of temperate forests which play an important role in global carbon (C) cycle contributing to the lowering of atmospheric CO2 concentration. In such context, the CS of an unmanaged old broad-leaf deciduous forest developing inside a Strict Nature Reserve, and its variations during the year were analyzed considering the monthly variations of leaf area index (LAI) and net photosynthetic rates (NP). Overall, the total yearly CS of the forest was 141 Mg CO2 ha?1 year?1 with the highest CS value monitored in June (405 Mg CO2 month?1) due to the highest LAI (5.0 ± 0.8 m2 m?2) and a high NP in all the broadleaf species. The first CS decline was observed in August due to the more stressful climatic conditions that constrained NP rates. Overall, the total CS of the forest reflects the good ecological health of the ecosystem due to its conservative management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号