首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 478 毫秒
1.
随着深度学习应用的普及和飞速发展,基于深度学习的图像识别方法广泛应用于农作物病虫害领域,但大部分的神经网络重视识别准确率的提高,却忽略神经网络庞大的参数计算量。为解决这个问题,基于渐进式生成对抗网络判别器模型和卷积注意力模块,提出一种改进的渐进式生成对抗网络判别器CPDM网络模型对农作物病虫害进行识别。通过对渐进式生成对抗网络判别器网络结构的调整,采用均衡学习率、像素级特征向量归一化和卷积注意力模块增强CPDM网络模型的特征提取能力,提高对真实图片的识别准确率。试验在PlantVillage数据集上进行,将该模型与VGG16、VGG19和ResNet18进行比较,得到TOP-1准确率分别为99.06%、96.50%、96.65%、98.86%,分别提高2.56%、2.41%、0.2%,且参数量仅为8.2 M。试验证明提出的CPDM网络模型满足在保证分类准确率的基础上,有效控制神经网络参数计算量的目的。  相似文献   

2.
基于改进ResNet的植物叶片病虫害识别   总被引:1,自引:0,他引:1  
轻量化植物叶片病虫害识别算法设计是实现移动端植物叶片病虫害识别的关键。研究提出一种基于改进ResNet模型的轻量化植物叶片病虫害识别算法Simplify ResNet。以人工采集图像和PlantVillage数据集图像为实验数据,根据移动端植物病虫害识别对准确率、速度和模型大小的实际需求,改进ResNet模型。使用5×5卷积替代7×7卷积,采用残差块的瓶颈结构代替捷径结构,采用模型剪枝处理训练后的模型。通过测试集5 786幅图像测试Simplify ResNet模型,证明5×5卷积和残差块的瓶颈结构可有效降低模型参数量,模型剪枝可有效降低训练后的模型大小。Simplify ResNet模型对测试集图像的识别准确率为92.45%,识别时间为48 ms,内存大小为36.14 Mb。与LeNet、AlexNet和MobileNet等模型相比,其准确率分别高18.3%,7.45%和1.2%。为移动端植物病虫害识别解决最重要的算法设计问题,为移动端植物病虫害识别做出有益探索。  相似文献   

3.
基于迁移学习的卷积神经网络植物叶片图像识别方法   总被引:10,自引:0,他引:10  
郑一力  张露 《农业机械学报》2018,49(S1):354-359
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(AlexNet、InceptionV3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后将本文方法与支持向量机(SVM)方法、深度信念网络(DBN)方法、卷积神经网络(CNN)方法在ICL数据库进行对比实验。实验使用Tensorflow训练网络模型,实验结果由TensorBoard可视化得到的数据绘制而成。结果表明,利用AlexNet、InceptionV3预训练模型得到的测试集准确率分别为95.31%、95.40%,有效提高了识别准确率。  相似文献   

4.
不同形式的机械损伤对蓖麻种子发芽生长和榨油后的蓖麻油质量影响不同,因此对产生机械损伤的蓖麻种子进行识别分类非常重要。提出了基于卷积神经网络的蓖麻种子损伤分类算法。以种壳缺失、裂纹和完整蓖麻种子(无损伤)的分类为例,构建了蓖麻种子训练集和测试集,搭建2个卷积层(每个卷积层8个卷积核)、2个池化层和1个全连接层(128个节点),实现分类。为提高分类的准确性和实时性,调整网络结构以及优化批量尺寸参数,得到较优的网络结构和批量尺寸;利用上下左右翻转扩充样本,改变优化器、学习率以及正则化系数对该网络进行组合试验,获得准确率及效率较优的组合。通过Dropout优化减小卷积神经网络模型的过拟合。试验结果表明:卷积层为5层、池化层为5层、批量尺寸为32时,该网络模型平均测试准确率为92.52%。在组合试验中,Sgdm优化器更新网络可以提高网络的分类性能;数据扩增可以增加样本的多样性,减小过拟合现象;通过Dropout优化卷积神经网络模型的过拟合;选择学习率为0.01,正则化系数为0.0005时,模型分类准确率达到94.82%,其中种壳缺失蓖麻种子准确率为95.60%,裂纹蓖麻种子准确率为93.33%,完整蓖麻种子准确率为95.51%,平均检测单粒蓖麻种子的时间为0.1435s。最后,开发蓖麻种子损伤分类系统,验证结果为:种壳缺失蓖麻种子的准确率为96.67%,裂纹蓖麻种子的准确率为80.00%,完整蓖麻种子的准确率为86.67%。该卷积神经网络模型在损伤蓖麻种子分类时具有较高的识别准确率,可在蓖麻种子在线实时分类的检测系统中应用。  相似文献   

5.
为实现苹果树叶片病虫害快速且准确地识别与分类,研究基于迁移学习的多种神经网络模型,对比不同模型在苹果树叶片病虫害识别上的准确度。构建VGG16,ResNet50,Inception V3三种神经网络模型,利用从PlantVillage上获取的4种不同的苹果树叶片图片,分别为苹果黑星病叶片,苹果黑腐病叶片,苹果锈病叶片以及健康苹果叶片。按照8∶1∶1的比例将图片分为训练集,测试集和验证集对模型进行训练。在相同的试验条件下对比分析VGG16,ResNet50和Inception V3的试验结果。三种模型在使用迁移学习技术的情况下对苹果树叶片病虫害识别准确率分别达到97.67%,95.34%和100%。与不使用迁移学习的模型相比,使用迁移学习能够明显提升模型的收敛速度以及准确率,为常见的苹果树病虫害识别提供了新的方法。  相似文献   

6.
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。  相似文献   

7.
基于改进ShuffleNetV2模型的荔枝病虫害识别方法   总被引:1,自引:0,他引:1  
为更好地助力荔枝病虫害防治工作,推进荔枝产业健康发展,本文以所收集的荔枝病虫害图像数据集为研究对象,基于轻量型卷积神经网络ShuffleNetV2模型,提出一个高精度、稳定且适用于荔枝病虫害的识别模型SHTNet。首先,在ShuffleNetV2模型中引入注意力机制SimAM,不额外增加网络参数的同时,增强重要特征的有效提取,强化荔枝病虫害特征并抑制背景特征。其次,在保证模型识别精度的同时,采用激活函数Hardswish减少网络模型参数量,使网络更加轻量化。最后,在改进模型上采用迁移学习方法,将源数据(Mini-ImageNet数据集)学习到的知识迁移到目标数据(数据增强后的荔枝病虫害图像数据集),增强模型识别不同的荔枝病虫害种类的适应性。实验结果表明,与原始ShuffleNetV2模型相比,本文提出的荔枝病虫害识别模型SHTNet的准确率达到84.9%,提高8.8个百分点;精确率达到78.1%,提高9个百分点;召回率达到73.2%,提高8.8个百分点;F1值达到75.8%,提高10.2个百分点;且综合性能明显优于ResNet34、ResNeXt50和MobileNetV3-large模型。本文提出的荔枝病虫害识别模型具有较高的识别精度和较强的泛化能力,为荔枝病虫害实时在线识别奠定了技术基础。  相似文献   

8.
针对现有基于卷积神经网络的水果图像分类算法均使用池化层进行降维处理会丢失部分特征,导致分类精度有待提高的问题,提出FC-CNN(Fruit Classification Convolutional Neural Network)水果图像分类算法。该算法基于深度卷积神经网络思想,设计了一种由二维卷积层、批量规范化层和激活函数组成的网络结构,利用Sofmax loss和L2正则化进行损失函数设计。算法使用卷积加步长替代池化层,让网络具有自主学习下采样能力,使用批量规范化层用于解决网络过拟合问题。采用Fruits-360数据集进行测试,实验表明,FC-CNN可以识别出48种水果,准确率可达到99.63%。与现有的深度学习水果图像分类算法相比,FC-CNN的识别准确率更高,识别种类更多。  相似文献   

9.
卷积神经网络模型参数冗余太大,收敛速度慢,对硬件计算资源要求过高,导致适用性差,不适合布署在边缘侧的嵌入式设备上,且大多数识别模型鲁棒性差,在复杂环境下识别效果不佳。为解决以上问题,设计两个基本模块用于搭建病害识别网络:一是高效残差模块,采用残差和多种卷积分解结构,在保证识别精度的情况下简化模型;二是恒等残差模块,用于加深网络层次,提升网络的拟合能力和抗干扰能力。搭建的高效运算网络对简单背景下的多种作物病害进行识别,训练集的准确率达到99.37%,验证集的准确率达到98.48%。优化损失函数后,训练集和验证集的准确率均在99%以上,收敛速度加快,参数内存仅3.15 MB,降低硬件计算力(FLOPs)的要求到1.71 M。将提出来的模型在复杂背景下进行测试,识别准确率均达到92.6%,且硬件计算力需求,参数内存,识别精度均优于MobileNet和ResNet,为实时检测作物病害提供参考。  相似文献   

10.
基于Caffe的生姜病害识别系统研究与设计   总被引:2,自引:0,他引:2  
以自然环境下采集到的生姜病害图片为基础,对炭疽病、姜瘟病、根结线虫病和白星病进行研究分析,提出一种基于卷积神经网络的生姜病害识别系统。首先是对收集来的图片进行二值化和轮廓分割等预处理,从而增强数据的可靠性。其次,将处理后的图像数据交由优化后的卷积神经网络模型进行分析、学习,并在Caffe框架下进行模拟仿真。最后,在已训练好的网络模型基础上利用Qt软件设计人机交互界面,从而达到数据可视化提高系统使用的便捷性。结果表明优化后的模型识别率达到了96%,可以较好地预测和识别生姜的相关病害。  相似文献   

11.
针对苹果叶片病害图像识别存在数据集获取困难、样本不足、识别准确率低等问题,提出基于多尺度特征提取的病害识别网络(Multi-scale feature extraction ConvNext, M-ConvNext)模型。采用一种结合改进的循环一致性生成对抗网络与仿射变换的数据增强方法(Improved CycleGAN and affine transformation, CycleGAN-IA),首先,使用较小感受野的卷积核和残差注意力模块优化CycleGAN网络结构,使用二值交叉熵损失函数代替CycleGAN网络的均方差损失函数,以此生成高质量样本图像,提高样本特征复杂度;然后,对生成图像进行仿射变换,提高数据样本的空间复杂度,该方法解决了数据样本不足的问题,用于辅助后续的病害识别模型。其次,构建M-ConvNext网络,该网络设计G-RFB模块获取并融合各个尺度的特征信息,GELU激活函数增强网络的特征表达能力,提高苹果叶片病害图像识别准确率。最后,实验结果表明,CycleGAN-IA数据增强方法可以对数据集起到良好的扩充作用,在常用网络上验证,增强后的数据集可以有效提高苹果叶片病害图像识别准确率;通过消融实验可得,M-ConvNex识别准确率可达9918%,较原ConvNext网络准确率提高0.41个百分点,较ResNet50、MobileNetV3和EfficientNetV2网络分别提高3.78、7.35、4.07个百分点,为后续农作物病害识别提供了新思路。  相似文献   

12.
农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。  相似文献   

13.
李丹 《农业工程》2020,10(6):36-40
针对在黄瓜叶部病害识别过程中使用传统卷积神经网络存在模型训练时间长、识别准确率低等问题,提出一种迁移学习和改进残差神经网络相结合的方法对黄瓜叶部病害进行识别。首先对数据集图像进行预处理,将数据集划分为训练集和测试集;然后对传统残差神经网络进行改进;最后使用迁移学习的方式对网络模型进行训练。利用该研究方法对不同的黄瓜叶部病害进行识别试验,结果表明该方法具有较高的识别准确率,可为其他作物的识别方法研究提供参考。   相似文献   

14.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

15.
为解决传统的玉米病害识别方法中特征提取主观性强及误识率高的问题,提出利用卷积神经网络对玉米病害进行识别。以玉米病害图像和健康图像共5种类别的玉米图像为研究对象,并采用LeNet模型进行试验。首先,按照8∶2的比例为每种玉米病害图像选择训练集和测试集。然后,通过试验组合和对比分析的方法比较不同卷积神经网络结构设置对准确率的影响,选出最佳参数。另外,选用Adam算法代替SGD算法来优化模型,通过指数衰减法调整学习率,将L2正则项添加到交叉熵函数中,并选择Dropout策略和ReLU激励函数。最后,确定了一个10层CNN网络结构。试验结果显示,玉米花叶病、灰斑病、锈病、叶斑病和玉米健康识别率分别为95.83%、90.57%、100%、93.75%、100%,平均识别率达96%,平均计算时间为0.15 s。经试验结果比较,该模型识别效果明显高于传统方法,为玉米病害的防治提供技术支持。  相似文献   

16.
崔金荣  魏文钊  赵敏 《农业机械学报》2023,54(11):217-224,276
针对水稻病害识别方法准确度低、模型收敛速度缓慢的问题,本文提出了一种高性能的轻量级水稻病害识别模型,简称为CA(Coordinate attention)-MobileNetV3。通过微调的迁移学习策略完善了模型的训练,提升了模型收敛速度。首先创建10个种类的数据集,其中包含9种水稻病害和1种水稻健康叶片。其次使用CA模块,在通道注意力中嵌入空间坐标信息,提高模型的特征提取能力与泛化能力。最后,将改进后的MobileNetV3网络作为特征提取网络,并加入SVM多分类器,提高模型精度。实验结果表明,在本文构建的水稻病害数据集上,初始的MobileNetV3识别准确率仅为95.78%,F1值为95.36%;加入CA模块后识别准确率和F1值分别提高至96.73%和96.56%;再加入SVM多分类器,通过迁移学习后,改进模型的识别准确率和F1值分别达到97.12%和97.04%,参数量和耗时仅为2.99×106和0.91s,明显优于其他模型。本文提出的CA-MobileNetV3水稻病害识别模型能够有效识别水稻叶部病害,实现了轻量级、高性能、易部署的水稻病害分类识别算法。  相似文献   

17.
为实现果实拾捡机器人在光照不均、菠萝与周围环境的颜色相似性及果实间的遮挡和重叠等田间复杂环境下对单类别菠萝的快速准确识别,提出采用深度学习下的深层残差网络改进YOLOv3卷积神经网络结构,通过单个卷积神经网络遍历整个图像,回归果实的位置,将改进的YOLOv3的3个尺度检测分别融合相同尺度模块特征层的信息,在保证识别准确率的情况下,采用多尺度融合训练网络实现田间复杂环境下端对端的单类别菠萝果实检测。最后,对改进的算法进行性能评价与对比试验,结果表明,该算法的检测识别率达到95%左右,较原始方法检测性能提升的同时,检测速度满足实时性要求,该研究为拾捡果实机器人在复杂环境下提高识别菠萝果实的工作效率和环境适应性提供理论基础。  相似文献   

18.
番茄病害的及时检测可有效提升番茄的质量和产量.为实现番茄病害的实时无损伤检测,本研究提出了一种基于改进MobileNetV3的番茄叶片病害分类识别方法.首先选择轻量级卷积神经网络Mobile?NetV3,在Image Net数据集上进行预训练,将预训练得到的共享参数迁移到对番茄叶片病害识别的模型上并做微调处理.采用相同...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号