首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing prevalence of antimicrobial resistances is now a worldwide problem. Investigating the mechanisms by which pets harboring resistant strains may receive and/or transfer resistance determinants is essential to better understanding how owners and pets can interact safely. Here, we characterized the genetic determinants conferring resistance to β-lactams and quinolones in 38 multidrug-resistant Escherichia coli isolated from fecal samples of dogs, through PCR and sequencing. The most frequent genotype included the β-lactamase groups TEM (n = 5), and both TEM + CTX-M-1 (n = 5). Within the CTX-M group, we identified the genes CTX-M-32, CTX-M-1, CTX-M-15, CTX-M-55/79, CTX-M-14 and CTX-M-2/44. Thirty isolates resistant to ciprofloxacin presented two mutations in the gyrA gene and one or two mutations in the parC gene. A mutation in gyrA (reported here for the first time), due to a transversion and transition (TCG  GTG) originating a substitution of a serine by a valine in position 83 was also detected. The plasmid-encoded quinolone resistance gene, qnrs1, was detected in three isolates. Dogs can be a reservoir of genetic determinants conferring antimicrobial resistance and thus may play an important role in the spread of antimicrobial resistance to humans and other co-habitant animals.  相似文献   

2.
Abstract

AIMS: To assess the occurrence of, and characterise, extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase (AmpC)-producing Enterobacteriaceae isolated by veterinary diagnostic laboratories from infection sites in companion animals in New Zealand.

METHODS: Selected Enterobacteriaceae isolates were submitted by seven New Zealand veterinary diagnostic laboratories. They were isolated from infection sites in companion animals between June 2012 and June 2013, and were resistant to amoxicillin-clavulanic acid, fluoroquinolones, or any combination of two or more antimicrobials. Based on disk diffusion test results, the isolates were phenotypically categorised according to production of ESBL and AmpC. Genes for ESBL and AmpC production were amplified by PCR and sequenced. Escherichia coli isolates were also typed by multilocus sequence typing.

RESULTS: A total of 115 isolates matching the inclusion criteria were obtained from the participating laboratories, of which 74 (64%) originated from dogs and 29 (25%) from cats. Seven bacterial species were identified, of which E. coli was the most common (87/115, 76%). Of the 115 isolates, 10 (9%) expressed the ESBL phenotype, 43 (37%) the AmpC phenotype, and seven (6%) both ESBL and AmpC phenotypes. Of the 60 ESBL and AmpC-producing isolates, 36 (60%) were E. coli. Amongst these isolates, 27/60 (45%) were classified as multidrug resistant, compared with 15/55 (27%) non-ESBL or AmpC-producing isolates (p<0.01). Ninety five isolates were resistant to amoxicillin-clavulanic acid and 58 (61%) of these were ESBL or AmpC-producing. The predominant ESBL genes were blaCTX-M-14 and blaCTX-M-15, and the dominant plasmid-encoded AmpC gene was blaCMY-2. Thirty-eight E. coli multilocus sequence types (ST) were identified, and the most prevalent were ST12 (12/89, 13%), ST131 (6/89, 7%) and ST648 (6/89, 7%). ESBL and AmpC-producing isolates accounted for 35/1,082 (3.2%) of the Enterobacteriaceae isolated by one laboratory network over the study period.

CONCLUSIONS AND CLINICAL RELEVANCE: ESBL and AmpC-producing Enterobacteriaceae were associated with clinical infections in companion animals in New Zealand, and were often multidrug resistant. In this study, these organisms accounted for <5% of all Enterobacteriaceae isolated from infection sites by one laboratory network, but their prevalence among isolates resistant to amoxicillin-clavulanic acid was 61%. Therefore routine secondary testing for ESBL and AmpC production by Enterobacteriaceae that are resistant to amoxicillin-clavulanic acid in primary testing could improve the accuracy of definitive antimicrobial therapy in companion animals in New Zealand.  相似文献   

3.
1. A field study was performed to investigate the presence and characteristics of ciprofloxacin-resistant, extended spectrum β-lactamase (ESBL) and AmpC Escherichia coli from turkeys in Great Britain. E. coli were isolated from ~9000 boot swab samples from 27 different farms owned by four different companies. Between 1 and 14 visits were made to each farm (mean 3) at between 0 and 15?m intervals (mean?~?5?m).

2. CHROMagar ECC with and without ciprofloxacin or cephalosporin antibiotics was used as selective isolation media. Representative isolates with different phenotypes were tested for mutations in gyrA and for: qnrA, B, S, qepA and aac(6′)-Ib genes, for ESBL phenotype, the presence of bla CTX-M genes and plasmid type, and for ampC genes. Representative ciprofloxacin-resistant and CTX-M isolates were further tested for serotype and PFGE type. On ciprofloxacin selective media 55% of samples yielded ciprofloxacin resistant E. coli and of those further analysed, most had ciprofloxacin MICs >4 mg/l and mutations in gyrA.

3. For the different companies, the mean number of samples per farm with cefoxitin- or cefotaxime-resistant isolates ranged from 1·0% to 61·9% and 4·7% to 31·7% respectively. Cefotaxime-resistance was most commonly associated with an ESBL phenotype, a CTX-M-1 or CTX-M-14 sequence type and an I1-γ or K plasmid inc type. The mechanism of cefoxitin resistance was not determined for most isolates, but where determined it was bla CMY-2.

4. PFGE and serotyping showed clonally-related isolates persisting over multiple visits suggesting both more prudent use of antibiotics and improved farm hygiene are needed to address the issue of antimicrobial resistance in isolates from turkeys.  相似文献   

4.
Pathogenic Escherichia coli is an important cause of diarrhea, edema disease, and septicemia in swine. In Japan, the volume of antimicrobial drugs used for animals is highest in swine, but information about the prevalence of antimicrobial-resistant bacteria is confined to apparently healthy animals. In the present study, we determined the O serogroups, virulence factors, and antimicrobial resistance of 360 E. coli isolates from swine that died of disease in Kagoshima Prefecture, Japan, between 1999 and 2017. The isolates of the predominant serogroups O139, OSB9, O149, O8, and O116 possessed virulence factor genes typically found in diarrheagenic E. coli. We further found five strains of third-generation cephalosporin-resistant E. coli that each produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-15, blaCTX-M-24, blaCTX-M-61, or blaSHV-12. In 218 swine with a clear history of antimicrobial drug use, we further analyzed associations between the use of antimicrobials for the treatment of diseased swine and the isolation of resistant E. coli. We found significant associations between antimicrobial use and selection of resistance to the same class of antimicrobials, such as the use of ceftiofur and resistance to cefotaxime, cefazolin, or ampicillin, the use of aminoglycosides and resistance to streptomycin, and the use of phenicols and resistance to chloramphenicol. A significant association between antimicrobial use and the resistance of E. coli isolates to structurally unrelated antimicrobials, such as the use of ceftiofur and resistance to chloramphenicol, was also observed.  相似文献   

5.
The emergence of CTX-M-1 producing Uropathogenic Escherichia coli (UPEC) has become a serious challenge. In addition to antimicrobial resistance, a number of virulence factors have been shown. Therefore, this study was designed to determine the prevalence of O- serogroups, phylogenetic groups, exotoxin genes, and antimicrobial resistance properties of CTX-M-1- producing UPEC. A total of 248 UPEC isolates were collected. The antibiotic resistance was performed, and PCR was used to detect the blaCTX-M1, exotoxins, serogroups and phylogroups of UPEC. Of 248 isolates, 95 (38.3%) harbored blaCTX-M-1. Of them, serogroups O1 and O25 were predominant, accounting for 20% and 13.7%, respectively. The hlyA was the dominant exotoxin gene (32.6%), followed by sat (28.4%), vat (22.1%), cnf (13.7%), picU (8.4%), and cdt (2.1%). The hlyA gene was significantly associated with pyelonephritis (P = 0.003). Moreover, almost half of the isolates (45.4%) belonged to phylogenetic group B2. Most of exotoxin genes were present in significantly higher proportions in group B2 isolates except cdt gene (P < 0.05). All of the isolates were susceptible to imipenem, nitrofurantoin, and fosfomycin. The CTX-M-1-producing UPEC strains causing nosocomial infections are more likely to harbor certain exotoxin genes, raising the possibility that this increase in virulence genes may result in an increased risk of complicated UTI.  相似文献   

6.
This study investigated the potential spread of CTX-M-14 Escherichia coli from a known ESBL E. coli positive farm and risk factors for the presence of CTX-M E. coli on dairy farms. Between November 2009 and March 2010, 65 farms in North West England and North Wales were visited and animals sampled for E. coli producing CTX-M ESBLs. Seventeen of these were known to have received animals from a known ESBL E. coli positive 'index' farm since 2005 (linked farms). The prevalence of CTX-M E. coli in the population of linked farms was 58.8% (10/17; CI(95%) 32.9-81.6%) and in the randomly selected control population was 35.4% (17/48; CI(95%) 22.2-50.5%). There was no significant (p>0.05) linkage for the detection of any CTX-M E. coli or specifically a CTX-M-14 E. coli to the index farm. Group 1 (CTX-M-15, CTX-M-55, CTX-M-1, CTX-M-32), group 2 (CTX-M-2) and group 9 (CTX-M-14, CTX-M-14B, CTX-M-27) CTX-M E. coli were identified on the study farms. Molecular analysis revealed that three plasmids from linked farms had similar sizes (95kbp), replicon type (IncK) and backbone genes as that from the index farm. Logistic regression analysis revealed that farms that had used a 3rd or 4th generation cephalosporin (ceftiofur, cefoperazone and cefquinome) in livestock in the last 12months were nearly 4times more likely to have ESBL E. coli present (p=0.037; OR=3.93). There was no significant association between presence of CTX-M E. coli and the use of any 1st or 2nd generation cephalosporins. Several other risk factors for the presence of CTX-M E. coli were identified, such as storage of slurry in a pit, operating an open herd policy and infrequent cleaning of calf feeding equipment.  相似文献   

7.
Pasteurella multocida is the causative agent of many diseases of economic importance in veterinary medicine and is characterized by high zoonotic potential. Pet animals can be infected and play a major role as carriers. This study aimed to characterize the genetic diversity of P. multocida isolated from dogs, cats and rabbits, and to evaluate their antimicrobial susceptibility profiles. A total of 620 animals were studied; 51 were positive for P. multocida and 92 strains were isolated. 60.9% of the strains belonged to the capsular type A, while the remaining were classified as non-typeable. The hgbA, ptfA, sodC, tadD and hsf2 genes were more frequent among the rabbit strains. Sulfonamides and cotrimoxazole presented the highest resistance rate, followed by erythromycin. PFGE clustered strains according to host species. Our results indicate that P. multocida from companion animals carry several virulence factors and are resistant to antimicrobials commonly used in human and veterinary medicine.  相似文献   

8.
Antimicrobial‐resistant bacteria represent an important concern impacting both veterinary medicine and public health. The rising prevalence of extended‐spectrum beta‐lactamase (ESBL), AmpC beta‐lactamase, carbapenemase (CRE) and fluoroquinolone‐resistant Enterobacteriaceae continually decreases the efficiency of clinically important antibiotics. Moreover, the potential for zoonotic transmission of antibiotic‐resistant enteric bacteria increases the risk to public health. Our objective was to estimate the prevalence of specific antibiotic‐resistant bacteria on human contact surfaces in various animal environments. Environmental surface samples were collected from companion animal shelters, private equine facilities, dairy farms, livestock auction markets and livestock areas of county fairs using electrostatic cloths. Samples were screened for Enterobacteriaceae expressing AmpC, ESBL, CRE or fluoroquinolone resistance using selective media. Livestock auction markets and county fairs had higher levels of bacteria expressing both cephalosporin and fluoroquinolone resistance than did equine, dairy, and companion animal environments. Equine facilities harboured more bacteria expressing cephalosporin resistance than companion animal shelters, but less fluoroquinolone resistance. The regular use of extended‐spectrum cephalosporins in livestock populations could account for the increased levels of cephalosporin resistance in livestock environments compared to companion animal and equine facilities. Human surfaces, as well as shared human and animal surfaces, were contaminated with resistant bacteria regardless of species environment. Detecting these bacteria on common human contact surfaces suggests that the environment can serve as a reservoir for the zoonotic transmission of antibiotic‐resistant bacteria and resistance genes. Identifying interventions to lower the prevalence of antibiotic‐resistant bacteria in animal environments will protect both animal and public health.  相似文献   

9.
To evaluate the diversity of extended-spectrum β-lactamases (ESBL) genes among food-producing animals, 48 isolates of ESBL-producing Escherichia coli isolates were obtained from rectal samples of broilers, layers, beef cattle and pigs, at the slaughterhouse level. ESBL-carrying E. coli were isolated from 60.0% of individual broiler rectal samples, 5.9% of layers, 12.5% of beef cattle and 3% of pigs. One ESBL-producing Klebsiella pneumoniae was isolated from a broiler. The ESBL-positive E. coli isolates from broilers harbored various ESBL genes: bla (SHV-12), bla(CTX-M-2), bla(CTX-M-14), bla(CTX-M-15) and bla(CTX-M-44). The plasmid DNAs were analyzed by restriction patterns. Homogeneous band patterns were yielded in those of K. pneumoniae and E. coli isolates harboring the bla(CTX-M-2) gene from different farms. No genetic relation between the 2 CTX-M-14 ESBL-producing strains was found by pulsed-field gel electrophoresis, although 2 plasmids in these strains, obtained from different broiler farms, were similar to each other. This study provides evidence that the proliferation of CTX-M-producing E. coli is due to the growth of indigenous CTX-M-producing strains and the possible emergence of strains that acquired CTX-M genes by horizontal transfer in different broiler farms. CTX-M-producing coliforms in broilers should be controlled due to the critical importance of cephalosporins and the zoonotic potential of ESBL-producing bacteria.  相似文献   

10.
Antimicrobial resistance surveillance targeting agricultural animals is practiced in many countries but does not often include media selective for cephalosporin resistance. Here, we compared the frequency of recovery of resistant Escherichia coli using selective and non-selective media from the cecal contents of 116 chickens collected by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). Third generation cephalosporin resistance was detected in 24 samples including 12, 10, and 2 on selective, non-selective, and both media, respectively. Isolates producing the CTX-M-1 ESBL were grown from 11 samples, 10 on selective medium only. Our results suggest that current surveillance approaches underestimate the true prevalence of resistance to critically important antimicrobials.  相似文献   

11.
Currently, antimicrobial-resistant staphylococci, particularly methicillin-resistant Staphylococcus pseudintermedius (MRSP), are frequently isolated from canine superficial pyoderma in Japan. However, little is known regarding the nasal prevalence of MRSP in pet dogs. Here, we determined the prevalence of antimicrobial-resistant staphylococci in nares and affected sites of pet dogs with superficial pyoderma. Of the 125 nares and 108 affected sites of pet dogs with superficial pyoderma, 107 (13 species) and 110 (eight species) staphylococci strains, respectively, were isolated. The isolation rate of S. pseudintermedius from pyoderma sites (82/110 strains, 74.5%) was significantly higher than that from nares (57/107 strains, 53.3%) (P<0.01). Notably, the prevalence of MRSP (18/57 strains, 31.6%) in nares was equivalent to that in pyoderma sites (28/82 strains, 34.1%). Furthermore, the phenotypes and genotypes of antimicrobial resistance in MRSP strains from nares were similar to those from pyoderma sites. Our findings revealed that the prevalence of antimicrobial-resistant staphylococci in the nares of pet dogs with superficial pyoderma is the same level as that in affected sites. Therefore, considerable attention should be paid to the antimicrobial resistance of commensal staphylococci in companion animals.  相似文献   

12.
Isolates of extended-spectrum cephalosporin (ESC)-resistant Salmonella enterica serovar Typhimurium obtained from two different farms in Fukushima Prefecture, Japan, in 2007 were characterized in order to determine the genetic basis of resistance. ESC resistance in the two isolates was mediated by an AmpC β-lactamase encoded by the bla(CMY-2) gene, which is located in a large self-transmissible plasmid in each isolate. The sizes of the bla(CMY-2)-carrying plasmids were different. The replicon types of the plasmids were I1-Iγ and A/C. The results of macrorestriction analysis and phage typing suggest a close relationship between both isolates. This is the first report of ESC-resistant S. Typhimurium isolated from cattle in Japan.  相似文献   

13.
Our objectives were to describe the antimicrobial susceptibility of Escherichia coli isolates from dogs in the northeastern USA and to identify temporal trends in resistance to selected antimicrobial agents. Data were collected retrospectively for all canine E. coli isolates from clinical samples submitted to Cornell University’s Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. Antimicrobial susceptibility testing was performed on 3519 canine E. coli isolates; frequency of resistance to each agent ranged from 0.4% (amikacin) to 34.3% (ampicillin). No trends were evident among urinary isolates, but cephalosporin resistance remained consistently high. Among non-urinary isolates, there was evidence of a significantly increasing trend in prevalence of resistance to several agents, including cephalosporins, enrofloxacin, and tetracycline. These data suggest that some of the most commonly used antimicrobial agents in companion animal practice are becoming less effective against canine E. coli infections outside the urinary tract.  相似文献   

14.
Dissemination of extended-spectrum cephalosporin (ESC)-resistant Salmonella is a public health concern in the egg production industry. ESC-resistant Salmonella often acquires the bla gene via insertion sequences (ISs). Therefore, this study aimed to assess antimicrobial resistance in Salmonella from Japanese layer breeding chains and egg processing chains, and determine the genetic profiles of IS-like elements in ESC-resistant Salmonella. Antimicrobial susceptibility testing was performed on 224 isolates from 49 facilities involving layer breeder farms, hatcheries, pullet-rearing farms, and layer farms in breeding chains along with egg processing chains. ESC-resistant Salmonella strains were whole-genome sequenced. Among them, 40 (17.9%) were resistant to at least streptomycin, tetracycline, ampicillin, chloramphenicol, cefpodoxime, nalidixic acid, ciprofloxacin, and/or kanamycin despite lacking resistance to azithromycin and meropenem. Moreover, 15 were ESC-resistant Salmonella harboring blaCMY-2 (Salmonella enterica serovar Ohio, n=12; S. Braenderup, n=1; untypeable with O7:b:-, n=1) and blaCTX-M-14 (S. Cerro, n=1). IncA/C2 plasmids containing ISEcp1, IS26, and multiple antimicrobial resistance genes (including blaCMY-2) were identified in S. Ohio isolates from pullet-rearing and layer farms belonging to the same company. Chromosomal integration of partial or whole IncA/C2 plasmids was seen with two S. Ohio isolates via ISEcp1 or IS26, respectively. Antimicrobial resistance genes such as blaCMY-2 might be transmitted among the upper and the lower levels of layer breeding chains via the replicon type IncA/C2 plasmids containing ISEcp1 and IS26.  相似文献   

15.
Wang Y  He T  Han J  Wang J  Foley SL  Yang G  Wan S  Shen J  Wu C 《Veterinary microbiology》2012,159(1-2):53-59
The aim of this study is to characterize the prevalence of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli from captive non-human primates. A total of 206 E. coli isolates were collected from primates in six zoos in China in 2009 and their susceptibility to 10 antimicrobials were tested by broth microdilution. The susceptibility patterns of E. coli strains varied greatly among different zoos reflecting different backgrounds of antimicrobial usage. Both the ESBL-encoding genes and the PMQR genes were detected by PCR. Of the 206 strains, 65 (32%) were confirmed as phenotypic ESBL producers with bla(CTX-M) (27%, bla(CTX-M-15), n=31, bla(CTX-M-3), n=23 and bla(CTX-M-14), n=2) mainly mediating the ESBL phenotype. qnrS1 (18%, n=36) and oqxAB (15%, n=31) were the predominant PMQR genes and the prevalence of PMQR genes was much higher among phenotypic ESBL producers than that among phenotypic non-ESBL producers from any zoo. Notably, the PMQR genes qnrS1 and oqxAB and β-lactamase genes bla(TEM-1) and bla(CTX-M-3) were found together in 23 E. coli isolates in two zoos in Shanghai. PFGE analysis of these 23 isolates demonstrated nearly identical PFGE profiles (similarity matrix >97%) indicating this specific E. coli genotype was prevalent in these two zoos. To the best of our knowledge, this is the first report of these four genes coexisting in an E. coli genotype and the first report of antimicrobial resistance profiles in E. coli isolated from primates in China.  相似文献   

16.
Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, β-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.  相似文献   

17.
Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems.  相似文献   

18.
Reports of livestock infections with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E) are increasing. Based on interviews conducted over a 6-month period, we found that veterinarians in the Vietnamese province of Thai Binh prefer to prescribe colistin-based drugs (CBD) in chicken farms. We aimed to clarify whether CBD use selects for strains of colistin-resistant ESBL-E. With the cooperation of seven local households, we detected ESBL-E in chickens’ feces after treating chickens with CBD. Phylogenetic groupings and the presence of CTX-M/AmpC genes were determined, and the multi-antibiotic susceptibility of isolates was analyzed. Our results showed that ESBL-E presented in seven chickens’ feces from two households. Seventy-two percent of ESBL-E isolates harbored CTX-M9 and the phylogenetic group A; the colistin minimum inhibitory concentration (MIC) of all isolated ESBL-E ranged from 0.064 to 1 μg mL?1. Moreover, ESBL-E isolates were used to experimentally select for colistin resistance, and the effect of commercial CBD on ESBL-E was investigated. The results showed that an ESBL-E strain with a colistin MIC of 4 μg mL?1 was able to grow in media with CBD. Although CBD treatment was effective, in vitro experiments demonstrated that ESBL-E can easily acquire colistin resistance. Therefore, restrictions on colistin use are necessary to prevent the emergence of colistin-resistant bacteria.  相似文献   

19.
为了解贵州省猪源沙门氏菌对β-内酰胺类抗菌药物耐药性及其耐药基因的流行情况,本试验从贵州省9个地区规模养猪场中分离鉴定130株沙门氏菌,采用微量肉汤稀释法测定其对常用的8种β-内酰胺类抗菌药物的敏感性,并用PCR法对β-内酰胺酶耐药基因进行检测。结果显示,沙门氏菌对常用的β-内酰胺类抗菌药物耐药性十分严重,其中对头孢他啶的耐药率为100%,其次是氨苄西林和阿莫西林,耐药率分别为80.77%和76.15%,耐药率最低的是头孢噻呋和头孢氨苄,均为46.15%。所有菌株均为多重耐药,其中最少为二重,占总数的2.31%,最多为八重,占总数的4.62%,多重耐药主要集中在四至七重,占总数的88.46%。PCR结果显示,SHV耐药基因未检出,TEM、OXA、CTX-M 3种基因检出率分别是85%、75%和46%,细菌的耐药性与相关耐药基因的检出率基本呈正相关。结果表明,猪源沙门氏菌对β-内酰胺类药物具有普遍耐药性,其中头孢他啶尤为严重。TEM、OXA、CTX-M基因是贵州省猪源沙门氏菌主要耐药基因,临床日益严重的耐药现象与耐药基因的普遍存在有很大的关系。  相似文献   

20.
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号