首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study aimed to test the efficacy of 17 α‐methyl testosterone (17 α‐MT) alone and in combination with letrozole, an aromatase inhibitor, for the induction of sex reversal in protogynous greasy grouper, Epinephelus tauvina. Further, the long‐lasting effects of these treatments and spawning performance of sex‐reversed males were also investigated. Greasy grouper with oocytes in the perinucleolus stage were implanted with 5 mg 17 α‐MT kg?1 body weight (T1), 5 mg 17 α‐MT and 0.2 mg letrozole kg?1 body weight (T2) and 5 mg 17 α‐MT with 0.4 mg letrozole kg?1 body weight (T3) and no androgens/enzyme inhibitor implanted (C). The 17 α‐MT alone and in combination of letrozole‐induced sex reversal in greasy grouper, whereas untreated control fish (C) showed normal ovarian development. However, T2 and T3 group showed 100% sex reversal and completion of spermatogenesis up to functional male phase in 2 and 3 months, respectively, whereas T1 group resulted in only 66.67% functional male with motile spermatozoa after 4 months. Sex‐reversed males successfully fertilized the eggs during induced spawning. There were significant differences on fertilization and hatching rates between T2 group (79.00 ± 4.36%; 77.67 ± 2.87%, respectively) and T1 group (57.67 ± 3.17%; 63.87 ± 2.91%, respectively). The result suggested that 17 α‐MT (5.0 mg kg?1 BW) in combination with letrozole (0.2 mg kg?1 BW) has the potential to produce 100% sex‐reversed male in short period in greasy grouper, which might greatly help in seed production of greasy grouper.  相似文献   

2.
To induce synchronized ovulation, migrating wild Caspian brown trout (Salmo trutta caspius) females were treated with two interperitoneal injections of Des‐Gly10, d ‐Ala6 LHRH (LHRHa), given 3 days apart. Two injections of 100 μg kg?1 body weight of this hormone effectively induced ovulation. Within 27 days from the second injection, all fish injected with 100 μg kg?1 LHRHa had ovulated compared with 54.5% of the controls. The mean time to ovulation was reduced significantly (P<0.05) from 31.67±4.84 days in control fish and 28.83±7.31 days in sham‐treated fish to 16.36±1.61 days in fish injected with 100 μg kg?1 LHRHa. The fertilization rate in 50 and 100 μg kg?1 LHRHa‐injected fish was significantly lower than that in the control fish (P<0.05). In fish injected with 50 and 100 μg kg?1 LHRHa, significant (P<0.05) changes in testosterone (T) and 17α‐hydroxyprogestrone (OHP) levels were observed. After the second LHRHa injection, the fish injected with 100 μg kg?1 showed the highest serum levels of testosterone and OHP. These results demonstrate that the use of LHRHa can effectively reduce the mean time to ovulation and induce synchronized ovulation in Caspian brown trout.  相似文献   

3.
To determine the effects of A3α‐peptidoglycan (A3α‐PG) extracted from Bifidobacterium sp. on the growth, immune response and disease resistance of sea cucumber Apostichopus japonicus, a 70‐day feeding trial was conducted in this study. A total of 216 sea cucumbers were fed with four practical diets prepared from a commercial feed with different contents (0, 1.5, 2.5 and 4.0 g kg?1) of A3α‐PG. The specific growth rate (SGR), total coelomocyte count (TCC), phagocytotic activity and activities of four immunological enzymes in both cell‐free coelomic fluid (extracellular, EC) and coelomocyte lysate supernatant (intracellular, IC), including acid phosphatase (ACP), alkaline phosphatase (ALP), peroxidase (POD) and superoxide dismutase (SOD), were measured at the end of the feeding trial. Finally, the animals were administered a 16‐day Vibrio splendidus challenge via intraperitoneal injection to test the potency of A3α‐PG on disease resistance. Compared with the control (0 g kg?1 A3α‐PG), a significant increase (< 0.05) in SGR was observed in the groups fed with 1.5 and 2.5 g kg?1 A3a‐PG. The TCC, ranging from 7.25 × 106 to 1.05 × 107 cells mL?1, was not significantly affected (> 0.05) by A3α‐PG,. Coelomocyte phagocytotic activities in all of the A3α‐PG‐supplemented groups were significantly activated (< 0.05), but no significant difference (> 0.05) was observed. Sea cucumbers fed with 1.5 and 2.5 g kg?1 A3α‐PG exhibited significant activation (< 0.05) of EC/IC‐ACP, EC/IC‐ALP, and EC/IC‐POD activities. A significant increase in EC‐SOD activities (< 0.05) was exhibited by all groups with A3α‐PG supplementation. The challenge test showed that animals fed with diets containing 2.5 and 4.0 g kg?1 A3α‐PG had significantly lower cumulative mortalities compared with the control 16 days after exposure. All of the results presented here show that A3α‐PG can positively enhance the growth, immune response and disease resistance of sea cucumber, suggesting that dietary supplementation of A3α‐PG has potential applications in the health management of economic species of sea cucumber.  相似文献   

4.
This study was conducted to determine the effects of dietary α‐ketoglutarate (AKG) supplementation on the antioxidant defense system and gene expression of heat shock protein (HSP) 70 and HSP 90 in hybrid sturgeons Acipenser schrenckii ♀ × A. baerii ♂ exposed to ammonia‐N stress. A 2 × 3 factorial experiment was arranged, in which each diet (0%, 1% AKG) was randomly assigned to 0.25 (control) 5 and 10 mg L?1 ammonia‐N groups with three replicate aquaria for each 72 h. The 10 mg L?1 ammonia‐N significantly increased serum ammonia concentrations and intestinal Gln concentrations and GS activity compared with the 0.25 or 5 mg L?1 ammonia‐N groups. The intestinal Gln concentration and GS activity increased, and the serum ammonia concentration decreased, in fish given dietary supplementation of 1.0% AKG compared with fish given diets without AKG. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in serum, gills and intestines decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N, and their activity increased in fish given diets with 1% AKG. Catalase in the serum and gills decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N and increased in fish given diets with 1% AKG. The 10 mg L?1 ammonia‐N or 1% AKG supplementation increased HSP 70 and HSP 90 gene expression in the liver. The increased activity of antioxidant enzymes, and increased HSP 70 and HSP 90 gene expression in fish fed diets containing 1% AKG suggested higher tolerance to ammonia‐N stress.  相似文献   

5.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

6.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

7.
The impact of dietary α‐tocopherol on juvenile Chinese mitten crab Eriocheir sinensis was experimentally evaluated in a 10‐week study. Crab were fed with nine diets including three levels of α‐tocopherol (0, 100 and 300 mg kg?1 diet) and three levels of fish oil oxidation (fresh, moderate and high) in triplicates. Fresh and moderate oil oxidization enhanced weight gain, but moderate and high oil oxidization lowered survival and feed efficiency. The 100‐mg α‐tocopherol kg?1 diet resulted in higher hepatopancreas MDA than other α‐tocopherol diets. High oil oxidization led to the lowest serum superoxide dismutase (SOD) and glutathione peroxidase (GPH‐PX). The serum SOD and GPH‐PX activities in crab fed 100 mg α‐tocopherol were higher than in those fed other α‐tocopherol diets. The diet without α‐tocopherol addition lowered lysozyme and phenoloxidase (PO) activities compared to other α‐tocopherol diets. Fresh fish oil diet increased PO activity compared to oxidized oils. High oil oxidization caused significantly more mortality than fresh or moderate oxidization after 7‐d postchallenge with Aeromonas hydrophila. Supplementation with α‐tocopherol significantly enhanced resistance to bacterial infection. This study indicates that α‐tocopherol can protect lipid from peroxidation and enhance disease resistance.  相似文献   

8.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

9.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

10.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

11.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

12.
Rainbow trout (23.1 ± 0.4 g) were fed either a fishmeal‐ or plant‐based diet supplemented with various levels of zinc (0, 15, 30, 60 or 120 mg kg?1) for 12 weeks. Trout fed the fishmeal diet had significantly higher weight gain than with the plant‐based diet. Zinc supplementation in the fishmeal diet had no effect on growth performance, suggesting that additional dietary supplementation of zinc is not required. However, in trout fed the plant‐based diet, growth increased significantly up to 30 mg kg?1 zinc after which growth was not affected. Trout fed the plant‐based diet containing no zinc exhibited severe growth retardation, and in fish fed the 0 and 15 mg kg?1 zinc diets, cataracts were present. Use of broken‐line quadratic modelling suggests that dietary supplementation of zinc needed to prevent deficiency and promote adequate growth in rainbow trout fed the plant‐based diet in this study was 30.1 mg kg?1 (80 mg kg?1 total dietary zinc). This is higher than the NRC (2011, Nutrient Requirements of Fish and Shrimp) dietary recommended level of 15 mg kg?1 for rainbow trout. Following the NRC recommendation could lead to zinc deficiency in rainbow trout fed a plant‐based diet.  相似文献   

13.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

14.
This study was conducted to determine dietary thiamine requirement of juvenile Sclizothorax prenanti and evaluate the effect of dietary thiamine levels on growth performance, body composition and haemato‐biochemical parameters for this fish species. The seven experimental diets were formulated to contain the graded levels of thiamine (0, 10, 20, 30, 40, 60 and 100 mg kg?1 diet, respectively), providing the actual dietary thiamine values of 0.31 (control), 9.82, 21.49, 29.83, 41.66, 62.24 and 114.58 mg kg?1 diet, respectively. Each diet was assigned to three replicate groups of S. prenanti (initial body weight: 13.46 ± 0.28 g, means ± SD) for 60 days. Increasing dietary thiamine level up to 21.49 mg kg?1 diet increased weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) (< 0.05), beyond which they remained nearly unchanged. Similarly, hepatic thiamine concentration and several serum biochemical parameters (transketolase activity, triglyceride and total cholesterol contents) increased with increasing levels of thiamine up to 21.49 mg kg?1 diet (< 0.05) and, thereafter, remained almost constant. However, no significant differences in body composition (moisture, protein, lipid and ash contents) were found among dietary thiamine treatments (P > 0.05). Analysis by the broken‐line regression of WGR, SGR, FE, PER, hepatic thiamine concentration and serum transketolase activity indicated that dietary thiamine requirements in juvenile S. prenanti were 18.45–25.91 mg kg?1 diet.  相似文献   

15.
A study was conducted to investigate effects and interactions of magnesium (Mg) and vitamin E (VE) on growth performance, body composition, hepatic antioxidant capacity and serum biochemistry parameters of juvenile Japanese seabass Lateolabrax japonicus under oxidative stress condition. Fish (initial average body weight of 6.10 ± 0.20 g) were fed 9 oxidized oil diets supplemented with 3 grade levels of Mg (0, 520 and 1570 mg kg?1 diet) and VE (0, 60 and 200 mg kg?1 diet) for 8 weeks in freshwater. The results showed that diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE had highest growth and muscle lipid content. There were highest total superoxide dismutase, catalase, glutathione peroxidase activities and lowest malondialdehyde content in liver of fish fed diets supplemented 520 mg kg?1 Mg and/or 60 mg kg?1 VE. Contrary to Mg concentrations, Ca concentrations and Ca/Mg ratio in whole body were inversely related to dietary Mg levels. However, combined deficiency or excess of dietary Mg and VE led to the decrease of hepatic antioxidant capacity, body lipid deposition and growth of Japanese seabass under oxidative stress condition.  相似文献   

16.
A 56‐day feeding trial was conducted to evaluate the effects of supplemented diets with β‐glucan (BG) at four levels [0 (D1), 250 (D2), 500 (D3) and 1000 (D4) mg BG kg?1] on red sea bream, Pagrus major. The obtained results revealed a significant increase (P < 0.05) in final body weight, weight gain, specific growth rate, feed intake, body protein content, lysozyme activity and tolerance against low‐salinity stress test in all BG‐supplemented groups when compared with BG‐free group. Furthermore, D4 group resulted in a significant increase in feed efficiency ratio, protein gain, protein and lipid digestibilities, serum bactericidal activity and peroxidase content when compared with D1 group (P < 0.05). Haematocrit and plasma protein content in D3 group were significantly higher than those in D1 group (P < 0.05). Interestingly, BG supplementation decreased glutamic oxaloacetic transaminase (GOT) in D2 group and reactive oxygen metabolites in D2, D3 and D4 groups when compared with D1 group. Following low‐salinity stress test, significantly higher amounts of secreted mucus were observed in fish fed D2 and D4 diets than those from fish fed D1 diet (< 0.05). In conclusion, the supplementation of BG improves growth, stress resistance and immune response of P. major.  相似文献   

17.
A 9‐week feeding experiment was conducted to determine the effect of dietary biotin levels on growth performance and non‐specific immune response of large yellow croaker. Fish (6.16 ± 0.09 g) were fed twice daily to apparent satiation with diets containing 0.00 (as the basal diet), 0.01, 0.05, 0.25, 1.24 and 6.22 mg biotin kg?1 diet. Results showed that fish fed the basal diet had the lowest survival rate, and fish fed 0.05 mg kg?1 dietary biotin achieved significantly higher final weight and weight gain. Dietary biotin levels had no significant influence on carcass crude lipid, moisture and ash content, but significantly influenced the carcass crude protein. Liver biotin concentration significantly increased with the supplementation of biotin, but no tissue saturation was found within the supplementation scope of biotin. Broken‐line regression analysis of weight gain showed that juvenile large yellow croaker requires a minimum dietary biotin of 0.039 mg kg?1 for maximal growth. The analyses of serum parameters showed that the moderate‐ (0.05 mg kg?1) and high‐dose (6.22 mg kg?1) dietary biotin significantly improved both lysozyme and alternative complement pathway activities, indicating dietary biotin within a certain range could improve the non‐specific immune response of large yellow croaker.  相似文献   

18.
An 8‐week feeding trial was conducted to evaluate the optimum dietary γ‐aminobutyric acid (GABA) level in low fishmeal diet for juvenile Pacific white shrimp, Litopenaeus vannamei. Six practical diets (449 g kg?1 protein, 87 g kg?1 lipid) supplemented with graded levels of GABA (0, 50, 100, 150, 200, 250 mg kg?1) were formulated. Each diet was randomly assigned to triplicate groups of 30 shrimps (approximately 0.44 g), and the shrimps were fed four times a day to apparent satiation. Weight gain and gain rate were significantly increased with the supplementation of GABA (P < 0.05). Hepatosomatic index and survival were also significantly influenced by the dietary GABA levels (P < 0.05) and show a similar trend to those of growth performance. Insulin and neuropeptide Y concentrations in blood were increased with the supplementation of GABA. In total, 150 mg GABA kg?1‐supplemented diets significantly increased the survival after 12, 24 and 36 h of NH3 stress, also increased the total antioxidant capacity, total superoxide dismutase, catalase, antihydroxyl radical and phenoloxidase activities before and after the 36 h NH3 stress compared to basic group. These results clearly indicated that GABA could improve growth performance, antioxidative capacity and resistance against NH3 stress in L. vannamei, and 150 mg kg?1 GABA supplementation was suitable for L. vannamei fed with low fishmeal diet.  相似文献   

19.
Commercial tilapia production is dependent on monosex culture, commonly obtained through the inclusion of an androgen in the diet for a brief period soon after hatch. To determine a minimum effective dose and identify the problems associated with over‐dosing, Nile tilapia Oreochromis niloticus fry were fed diets containing methyltestosterone (MT) at rates up to 1200 mg kg?1 of diet for 28 days. The minimum effective dose for ≥95% males was 14 mg MT kg?1 diet. Percent phenotypic males increased as the rate increased from 3.75 (80%) to 30 mg kg?1 MT (99%). Methyltestosterone given at rates of 120 mg kg?1 or more reduced efficacy but did not result in a reduced frequency of males relative to that of non‐treated fish. The term ‘paradoxical feminization’ does not adequately describe the observed sex ratios, where no fish were feminized but the efficacy of MT at high doses to masculinize females was reduced. At 1200 mg MT kg?1, the frequency of females (48 ± 1%) was not different from that in the non‐treated population. The mechanism for the reduced efficacy is not clear and is not adequately explained as an aromatization of androgen to oestrogen response.  相似文献   

20.
To assess the effects of A3α‐peptidoglycan (A3α‐PG) extracted from Bifidobacterium sp. on the immune response and disease resistance of sea cucumber, different concentrations (0, 0.5, 5 and 50 mg mL?1) of A3α‐PG suspensions were used to perform hypodermic injection on Apostichopus japonicus, followed by a Vibrio splendidus challenge. Total coelomocyte count (TCC), phagocytosis activity and activities of four immunological enzymes in both cell‐free coelomic fluid (extra‐cellular, EC) and coelomocyte lysate supernatant (intracellular, IC), including acid phosphatase (ACP), alkaline phosphatase (ALP), superoxide dismutase (SOD) and peroxidase (POD), were measured at 2, 6, 14 and 24 h post injection (hpi). The TCC was not significantly affected (> 0.05) by A3α‐PG, ranging from 1.84 × 106 to 3.53 × 106 cells mL?1. The coelomocyte phagocytosis activity was significantly activated (< 0.05) in all the A3α‐PG treatments, whereas no significant difference was observed between them except 24 hpi (> 0.05). The EC‐ACP activity in the 5.0 mg mL?1 treatment increased significantly (< 0.05) at all sampling times, while the IC‐ACP activity in the 50 mg mL?1 treatment increased significantly (< 0.05) at 2 hpi. Also, the 5.0 mg mL?1 treatment had significant (< 0.05) increase in the EC‐ALP activity within 14 hpi and the EC‐POD activity at 2 hpi, respectively, while significantly (< 0.05) enhanced IC‐ALP and IC‐POD activities were observed in the 50 mg mL?1 treatment within 6 hpi and at 2 hpi, respectively. Only the 5.0 mg mL?1 treatment showed significant (< 0.05) increase in the EC‐SOD activity at 2 hpi and IC‐SOD activity within 14 hpi, respectively. The challenge test showed that the animals treated with 50 mg mL?1 of A3α‐PG had notably lower cumulative mortality after 14 days following V. splendidus exposure. All together, these results suggest that A3α‐PG could positively enhance immune response that effectively promotes the health status of A. japonicus against V. splendidus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号