首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 225 毫秒
1.
自动补苗装置精准定位自适应模糊PID控制   总被引:7,自引:7,他引:0  
为实现补苗装置精准定位控制,解决自动移栽作业过程中因穴盘缺苗和取苗投苗失败而导致的漏栽问题,采用自适应Fuzzy-PID控制算法来实现钵苗输送的步进定位控制。构建了步进电机角速度控制传递函数的数学模型,设计了自适应Fuzzy-PID控制器及其模糊规则,通过MATLAB的Simulink模块建立了基于模糊PID控制器的步进电机系统角速度控制模型,以阶跃信号作为激励信号,自适应模糊PID控制和PID控制的仿真试验表明:PID控制的响应时间为7 s,出现超调量为0.1的振荡,通过调整PID控制器参数增大比例系数,系统响应时间缩短为2.2 s,系统响应速度明显加快,且未出现振荡环节;自适应模糊PID的响应时间为0.12 s,步进电机系统快速到达阶跃响应的稳态值,步进电机角速度控制稳定,角速度响应快,满足钵苗输送的定位要求。自动补苗试验结果表明:在植苗频率为40、50与60株/min时,补苗成功率分别为100%,100%、95.8%,且只要光纤传感器检测到漏苗信号,基于自适应Fuzzy-PID控制的步进电机系统快速响应,补苗控制系统都能准确及时地进行自动补苗。该研究可为解决自动移栽机田间作业的漏栽问题提供参考。  相似文献   

2.
基于遗传算法的液肥变量施肥控制系统   总被引:4,自引:4,他引:0  
为解决大田牵引式液肥施肥机的变量施肥作业精度不高、施肥流量不均匀以及肥料浪费问题,该研究针对液肥变量施肥控制系统,基于遗传算法的模糊PID(Proportion Integral Derivative)对电动比例阀的控制过程进行优化。首先对牵引式液肥变量施肥机的控制过程进行分析,建立液肥变量施肥控制系统的负反馈控制模型。根据控制系统要求,将模糊控制规则进行染色体编码,通过选择、交叉、变异等遗传算子对模糊控制规则进行仿真寻优,得到最优模糊控制规则表。依据得到的最优模糊控制规则对模糊PID控制器进行设置,并通过MATLAB软件进行仿真分析,结果表明,基于遗传算法的模糊PID控制的响应时间为4.86 s,小于传统PID控制的8.4 s和模糊PID控制的7.32 s。搭建试验平台进行液肥变量施肥控制系统流量控制的稳定性试验和变量控制试验,得到传统PID、模糊PID以及基于遗传算法的模糊PID在系统稳定运行时流量控制的相对误差分别为5.19%、3.40%、1.14%,响应时间分别为5.19、4.12、3.21 s,基于遗传算法的模糊PID较传统PID的相对误差减少了4.05个百分点,响应时间减少了1.98 s;基于遗传算法的模糊PID较模糊PID的相对误差减少了2.26个百分点,响应时间减少了0.91 s。基于遗传算法的模糊PID对液肥流量的控制效果优于传统PID和模糊PID,本文控制方法为变量施肥的研究提供了一种可行方案。  相似文献   

3.
针对在稻谷变温干燥过程中变温节点不明确、温度波动范围大和响应时间慢等问题,该研究设计了一种基于玻璃化转变的稻谷变温干燥控制系统。根据稻谷玻璃化转变曲线,确定变温控制策略,运用Logistic回归分析建立混配阀门开度和稻谷温度之间的控制模型并通过最小二乘法辨识模型参数。利用遗传算法对模糊隶属度函数进行优化,目标函数值迭代至0.118收敛,寻得最优幅宽。在Simulink仿真试验中,稻谷温度设定为42 ℃时,模糊PID控制的响应时间为66.43 s,且超调量为3.600%,优化后的模糊PID控制响应时间为37.06 s,且超调量为0.120%;在150 s加入5 s的外部信号干扰,优化后的模糊PID控制比模糊PID控制的调节时间少4.19 s且超调量减小0.050%;在稳态时输入升温信号,优化后的模糊PID控制比模糊PID控制的调节时间少16.79 s且超调量低0.338%。利用自主研制的干燥试验台进行变温试验,在变温响应试验中,优化后的模糊PID控制比模糊PID控制在目标温度和梯度升温调节时间中分别缩短了37.56 s和18.63 s;在温度稳定性试验中,稻谷温度变化范围为41.9~42.1 ℃,平均相对误差小于0.4%,变异系数小于0.5%;在建三江国家农业高新技术示范区浓江农场进行生产性验证,优化后的模糊PID控制系统响应时间小于30 s,稳态温度误差在±0.15 ℃,平均相对误差小于0.5%。测试数据表明变温干燥控制系统性能稳定,满足实际干燥作业的生产工艺需求。  相似文献   

4.
光伏光热一体机的双光电跟踪太阳控制器研制   总被引:2,自引:2,他引:0  
针对聚光型光伏光热一体机的太阳跟踪精度和跟踪范围相互制约问题,设计了粗跟踪和精跟踪双光电传感器,由粗跟踪光电传感器大范围捕捉太阳位置,精跟踪光电传感器精确地把聚光光斑锁定在整块光伏电池板上;分析聚光光斑跟踪精度,计算驱动推杆运行频率;采用单片机控制电路,优化跟踪控制策略,使得双光电传感器协调稳定工作。试验研究表明该双光电跟踪太阳控制器用于光伏光热一体机,可实现0°~180°捕捉太阳,且跟踪误差小于0.5°;光伏光热一体机可获得电能和热能的双重效益。  相似文献   

5.
柴油机高压共轨系统轨压模糊控制与试验   总被引:1,自引:1,他引:0  
为了改善发动机的冷起动性能以及有利于各工况切换时喷油的精确控制,该文针对采用高压共轨系统的柴油机,建立了基于模型的轨压控制策略,首先分析推导其数学模型;然后利用MATLAB/Simulink建立了轨压控制模型,轨压控制设计了前馈控制加反馈控制的轨压控制器,轨压反馈控制设计了传统的增量式PID(比例-积分-微分,proportion-integration-differentiation)控制器和模糊自适应PID控制器;最后对轨压控制模型进行了离线仿真验证;在此基础上利用硬件在环系统进行发动机台架试验,比较了2种控制器的控制效果。仿真和台架试验结果表明,模糊自适应PID控制器在目标轨压突变时的响应性(响应时间小于0.3 s)和跟随性以及稳定工况下轨压的稳定性(稳态误差小于2 MPa)方面都优于传统的增量式PID控制器,从而验证了控制策略模型的正确性。该研究提出的基于模型的轨压控制策略有助于实现柴油喷油的精确控制,可为柴油机共轨技术国产化提供参考。  相似文献   

6.
为解决自动移栽机作业过程中由于机械手定位误差导致的抓取失败、伤苗及漏苗问题,实现整排取苗机械手准确快速定位,该文采用模糊PID控制算法实现自动取苗机械手的步进定位控制。根据整排取苗试验平台分析了机械手水平和竖直方向的定位精度需求,以两相混合式步进电机为对象建立步进电机角速度控制模型,设计模糊规则,建立模糊PID控制器,通过对误差及误差变化率的在线修正,来满足不同误差和误差变化率情况下的控制要求。应用MATLAB/Simulink进行系统仿真,从超调量、响应时间和稳定性指标验证了控制方法的可行性;以单位阶跃信号作为激励,分析PID和模糊PID的控制效果,结果表明:通过固定参数PID仿真分析,获得系统最优PID参数为KP=20,KI=0.2,KD=1,达到稳态所需的时间为0.285 s。在此参数下,模糊PID控制达到稳态所需时间为0.25 s,响应速度优于固定参数PID控制,系统无超调。固定参数PID和模糊PID控制加入扰动后的控制效果分析表明,模糊PID控制系统超调量为40%,达到稳态所需时间为1.34 s,均明显小于固定参数PID控制43%和1.45 s,表明模糊PID在具有扰动的环境中控制效果明显优于固定参数PID控制,步进电机系统快速响应,控制稳定。系统试验结果,模糊PID控制算法的最大误差为2.8 mm,定位平均相对误差为0.81%,定位准确度高,可以满足机械手水平定位精度要求。  相似文献   

7.
提高太阳自动跟踪控制系统的运行稳定性和跟踪精度,需要考虑外界环境因素对系统的影响及选择适当的跟踪方式。目前,太阳自动跟踪系统普遍采用光电跟踪和程序跟踪相结合的混合跟踪方式,将光强值与光强阈值的差值作为切换跟踪方式的依据。当光强值趋近光强阈值时,会造成跟踪方式频繁的切换,该文针对该问题,以外界光强大小、光强变化和风速大小为特征目标,利用MATLAB中的模糊识别方法归类总结了天气情况和系统运行情况,建立了一种基于环境因素判断的模糊识别系统,通过仿真验证,得到了天气类型和系统的运行情况,仿真结果完全符合推理条件,并与计算所得结果基本一致。该研究为太阳自动跟踪系统的启停和跟踪方式的切换提供了可靠的理论支持,且具有较高的实用性和可行性。  相似文献   

8.
变量喷雾流量阀的变论域自适应模糊PID控制   总被引:8,自引:6,他引:2  
为解决变量喷雾过程中实时混药时农药微小流量的控制问题,采用小型针阀、直流电动机及减速器设计了机电流量控制阀。构建了机电流量控制阀传递函数的数学模型,并为之设计了变论域自适应模糊PID控制算法。对该流量控制阀进行了变论域自适应模糊PID控制和PID控制的MATLAB仿真,比较结果表明:PID控制的响应时间为3.5 s,最大超调量约为39.0%,变论域自适应模糊PID的响应时间为0.93 s,超调量最大不超过2.9%。系统稳定性,准确性和快速性等指标完全满足农业技术要求。  相似文献   

9.
果园升降平台自动调平控制系统设计与试验   总被引:7,自引:6,他引:1  
为提高果园升降平台调平精度和稳定性,设计了一种自动调平控制系统。通过调平机构动力学分析,建立了调平控制系统数学模型;利用融合卡尔曼滤波的模糊PID控制电磁阀驱动油缸伸缩调整工作台姿态,实现其自动调平。对控制系统进行仿真,结果表明:模糊PID控制较PID控制性能好,峰值时间缩短47.82%,调节时间缩短48.10%,最大超调量减小52.78%,经卡尔曼滤波后控制误差降低44.57%;对系统响应时间和调平效果进行测试,结果表明:自动调平控制系统响应时间为0.078 s;在平台不升降和升降2种工况下,最大坡度满载下自动调平最大误差分别为1.08°和1.74°,调平精度相对原果园升降平台调平系统分别提高了1.69°和1.91°,较好的实现了工作台自动调平控制。该研究为农业机具调平控制提供参考。  相似文献   

10.
东方红X-804拖拉机的DGPS自动导航控制系统   总被引:37,自引:29,他引:8  
该文在东方红X-804拖拉机上开发了基于RTK-DGPS的自动导航控制系统。系统主要包括RTK-DGPS接收机、导航控制器、转向操纵控制器、电控液压转向装置和转向轮偏角检测传感器。其中转向操纵控制器、转向轮偏角检测传感器和电控液压转向装置构成转向轮偏角的闭环控制回路,该回路可根据导航控制器提供的期望转向轮偏角实现偏转角的随动控制。将拖拉机运动学模型和转向操纵控制模型相结合,建立了拖拉机直线跟踪的导航控制传递函数模型,模型的输入是横向跟踪误差,输出是期望的转向轮偏角。设计了基于PID算法的导航控制器,仿真分析了系统稳定性和动态响应性能,确定了PID控制参数的较佳取值。针对东方红X-804拖拉机转弯半径大的特点,采用跨行地头转向控制方式,提出了具体的控制流程及算法。田间试验结果表明:采用所设计的DGPS自动导航控制系统,在拖拉机行进速度为0.8 m/s时,直线跟踪的最大误差小于0.15 m,平均跟踪误差小于0.03 m,所提出的跨行地头转向控制方法对试验拖拉机具有良好的适用性。  相似文献   

11.
碟式太阳能自动跟踪系统传动机构的误差分析   总被引:1,自引:1,他引:0  
虽然碟式太阳能集热发电的效率高、开发潜力巨大,但是需要实时对太阳的位置进行精确跟踪。为了提高碟式太阳能自动跟踪系统的精度,该文设计了一种碟式太阳能自动跟踪系统的工作原理图和传动机构,并使用ADAMS软件对其进行了物理仿真,仿真主要基于传动机构运动学特性,包括跟踪角度及主驱动件的角速度、角加速度等方面。分析结果显示传动机构运动学误差约为0.02°,与目前整机系统最小误差±0.20o的标准相比,仅为其误差量的10%。同时,对碟式太阳能自动跟踪系统的误差进行了分析,该研究为提高碟式太阳能自动跟踪系统精度提供了一定的理论依据。  相似文献   

12.
目前在太阳能热发电领域,仅有槽式太阳能实现了商业发电,但是槽式太阳能需要实时进行太阳跟踪。为了提高槽式太阳能跟踪精度,该文研制了一种基于可编程逻辑控制器PLC的太阳自动跟踪系统,并采用视日运动轨迹算法主动式跟踪策略,计算出槽式太阳聚光器跟踪太阳的旋转角度,并用该角度产生控制指令驱动液压油缸,实现对南北布置东西跟踪的槽式太阳能聚光器的精确太阳跟踪,选取了4个典型日期分析该跟踪系统在4个典型日期时太阳位置的高度角、方位角、跟踪太阳的旋转角度以及聚光器的旋转角度等数据,研究聚光器的运行特性。应用结果显示,该跟踪控制系统计算的太阳位置算法与国际上比较先进的高精度太阳位置SPA计算算法之间的误差在0.12°以内,角度传感器的变送误差在0.044°以内,间歇跟踪驱动最大误差在0.4°以内,经过现场测试整个跟踪系统的误差在0.5°以内。同时,对聚光器的运行轨迹数据分析显示抛物槽式聚光器的全年最大运行速率出现在冬至日的正午时刻,达到0.398°/min。该研究可以为抛物槽式太阳能聚光器的传动机构设计提供理论依据。  相似文献   

13.
为了降低太阳跟踪系统的成本和复杂程度,以模拟电路及光电转换原理为基础,研制了一种跟踪精度可调整的全天候太阳跟踪控制系统和T-L型太阳方位探测器,并通过光斑检测试验,对该系统的跟踪性能进行了分析,试验方法是将底部带小孔的一次性纸杯粘贴在带无数同心圆的纸上,将纸固定在双轴跟踪支架上,进而观察光斑在同心圆上的位置随时间的变化。研究结果表明:该系统的跟踪精度与太阳辐射强度有关,太阳辐射强度越大跟踪精度越高,太阳辐射强度越小跟踪精度越差,一天中的最小跟踪精度可达0.14°。该系统适合于对跟踪精度要求不是特别苛刻,并且对跟踪控制系统有廉价要求的场合,为太阳跟踪控制系统的普及奠定基础。  相似文献   

14.
为了解决传统太阳能混合跟踪控制判据范围宽泛,不能准确识别天气情况的问题,该研究设计了一种复杂天气状况下的太阳能混合跟踪系统。通过分析非聚光与聚光条件下系统运行在不同跟踪策略下的跟踪特性,结合天气特征,提出以辐照度识别天气状况的多阈值控制判据。控制判据将天气划分为辐照度波动天气、高辐照度天气、低辐照度天气与辐照度极低天气,装置可根据外界气象变化自动调整光电跟踪、视日运动轨迹跟踪或固定倾角控制模式。该系统搭建Node-Red总控平台,采用并行控制,优化混合跟踪策略,控制信号稳定输出。试验结果表明:应用该判据的混合跟踪系统工作性能优良,非聚光条件下系统平均发电功率分别高出光电跟踪与视日运动轨迹跟踪0.03和0.16 W,聚光条件下系统平均发电功率达到0.81 W,高出光电跟踪0.03 W,高出视日运动轨迹跟踪0.55 W,由此可知,该系统能够提升光伏发电的输出电能,为太阳能混合跟踪系统的跟踪方式切换提供了理论依据。  相似文献   

15.
近红外反射土壤含水率测量仪设计   总被引:1,自引:1,他引:1  
水资源是制约中国农业生产最重要的因素之一,土壤含水率的检测对农业生产实践具有至关重要的指导意义。该文根据土壤水分对不同光谱的吸收和反射特性,以发光二极管作为测量仪器光源,中心波长为1 940 nm的光为测量光,1 800 nm为参考光设计了专用的测量电路和相应的软件程序来测量土壤含水率。系统光源发出的光照射到土壤表面,经反射后光电转换器,再送至放大电路、模数转换器、显示和存储。试验表明:土壤含水率与相对吸收深度之间存在正比例关系,线性回归的确定系数为0.86。为了证明测量仪器的测量进度,将实际土壤含水率与仪器的测量结果进行比较修正,结果表明:烘干法与本仪器测量的土壤含水率的结果的均方根误差均为3.9%。因此,本次设计的测量仪器可满足对土壤含水率的测量要求,研究结果在指导农业生产,水资源合理利用,精细灌溉的实时监测中具有良好的应用前景。  相似文献   

16.
设施农业用槽式太阳能聚光电热联供系统性能分析与试验   总被引:2,自引:2,他引:0  
该文针对在设施农业中棚顶安装的光伏组件挡光导致棚间距离增加,提出一种可以用在设施农业中的槽式太阳能聚光电热联供系统,通过减少输出额定电功率所需光伏组件的数量以提高设施农业经济性,同时还可以在寒冷季节为作物生长提供热能。该文介绍了该聚光电热联供系统的工作原理,利用光学仿真软件对聚光器的聚光性能进行了仿真计算,搭建了聚光电热联供系统性能测试台,将电热联供系统组件与平板光伏组件工作温度进行了对比,通过改变换热介质流量,分析了系统综合性能效率随换热介质流量变化的规律。结果表明,在约2倍聚光条件下,换热介质质量流量为2.41 g/s,室外平均气温为2℃时,槽式聚光电热联供系统的输出电功率约是平板光伏组件的2倍,系统综合性能效率为69.88%,系统输出水温约为20℃左右。该研究可以为设施农业与太阳能光伏利用技术的高效耦合提供了参考。  相似文献   

17.
基于微热管阵列的太阳能温差发电系统优化   总被引:1,自引:1,他引:0  
温差发电技术因为具有无噪音、无污染物排放、体积小、质量轻等优点,是当今社会能源利用的科学研究热点,但其输出功率过低,传热效果较差仍是很大的问题。该文将微热管应用于低温下的太阳能温差发电中,对温差发电的系统设计进行优化,对其光热输出功率、热电输出功率较低的问题进行改善,通过采用PLC的双轴跟踪和黑铬镀金膜,将太阳能吸热能力提高了5.32%,同时在传热与散热过程中采用液态金属填充硅脂,让微热管阵列在太阳能温差发电传热过程中减少热损失,让光热平均的输出功率提升2.21%,在热电转换过程中,通过采用变长式电导增量法的MPPT,改善功率输出不稳定,精准度不高的问题,总体的光电输出功率可达到28.32 W,较之前相比光电输出功率提高了5.19%,通过对太阳能温差发电系统的追踪优化和传热结构的改善,完善了光伏板在农业上的应用。  相似文献   

18.
为推动中国玉米制种去雄机械化的进程,针对中国农业大学协助研制的去雄机,该文设计了一套包括主控板、显示屏和控制面板的去雄作业控制系统。系统可通过按钮操作实现去雄机构高度的手动调整,也可通过玉米穗高度信息的采集,控制算法的推导实现去雄机构高度的自动调整。系统控制参数由去雄机构的运动分析、车辆的作业车速和液压系统特性获得,并通过显示屏进行设置和显示。田间试验结果表明:去雄机安装本系统进行去雄作业,去雄效率是人工的18倍,去雄率达到96.16%,且去雄误差小于5%,满足去雄作业要求。该系统的设计为玉米去雄机的研制提供参考。  相似文献   

19.
基于变距光电传感器的小麦精播施肥一体机监测系统设计   总被引:10,自引:10,他引:0  
为实现小麦精播施肥过程的实时监测,确保播种作业质量,该文设计了一种基于变距光电传感器的小麦精播施肥一体机监测系统。该监测系统以STM32单片机硬件系统为下位机,通过反射式光电传感器和旋转编码器分别获取种肥流动与种肥轴转动信息,判断精播机运行状态,并通过Modbus通讯协议将信息传输至MCGS触摸屏上位机人机交互界面实时显示。下位机排种监测电路仿真测试结果表明,放大电路对种管光电传感器检测距离的改变值为4~7 mm;上下位机通讯测试结果表明,数据传输内容准确率为100%;监测系统样机试验测试结果表明,故障报警准确率≥92.5%,种肥缺失、堵塞、泄漏响应时间分别≤0.2、≤0.3、≤0.3 s。该监测系统实现了对小麦精播施肥机作业的实时高精度监测,有助于提高小麦精播机作业质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号