首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finger millet is an important staple food crop of semi-arid tropics also known as “super cereal” and has a higher calcium content than any other crops. Thousands of germplasm are being maintained and its genetic characterization is essential for further utilization in crop improvement. This research was performed to estimate the diversity and population genetic structure in the mini-core collection of finger millet by using SPAR markers, namely RAPD, ISSR, and DAMD markers. Altogether, 32 primers were used in this study, which produced 408 bands among which 344 were polymorphic. Analysis by combining all three marker systems revealed 84.31% of polymorphism among 90 genotypes of finger millet. Average polymorphism information content (PIC) produced by the ISSR, RAPD, and DAMD markers were 0.79, 0.81, 0.62, and average Rp values were 12.84, 8.17, and 8.53, respectively. The Jaccard's similarity value ranged from 0.233-0.861. IE 6059 and IE 5870 genotypes showed the highest Jaccard's similarity value of 0.861 in UPGMA analysis. Neighbor joining-based phylogenetic analysis produced two major clusters and the genotypes were grouped based on their geographical region of origin. Principal component analysis and principal coordinates analysis also confirmed the results. In population STRUCTURE analysis, the genotypes were divided into two subpopulations (P1and P2). These results confirmed that the genotypes we have assessed were genetically diverse and were clustered based on their geographic region of origin. The information obtained from this study will be useful in population management strategies and selection of genotypes for an effective breeding program in the future.  相似文献   

2.
水稻光温敏核不育系的ISSR和SSR遗传分析比较   总被引:25,自引:0,他引:25  
本研究应用ISSR和SSR技术建立了24个水稻光温敏核不育系的DNA指纹图谱,利用13个ISSR引物和20对SSR引物,分别获得174个多态性片段和62个多态性片段,平均每个ISSR引物检测到13.38个多态性片段,远远高于SSR引物的检测率。根据遗传距离进行的聚类分析表明,利用这两种标记所得的聚类结果十分相似,24个材料被聚为粳型,偏籼型和籼型三个类群,在籼型不育系类群内,又可明显的分成三个亚类群,其中7个安农S-1衍生的不育系聚为一类,与农垦58S衍生的不育系有明显的遗传差异。根据两种标记计算的遗传距离及其遗传关系,所得的结果仍有一些差异,但总体趋势是一致。研究结果表明,ISSR和SSR标记适用于构建DNA指纹图谱,进行分类鉴定和遗传分析。  相似文献   

3.
In this study, two microsatellite-based methodologies (SSR and ISSR) were evaluated for potential use in fingerprinting and determination of the similarity degree between 41 commercial cultivars of apple previously characterised using RAPD and AFLP markers. A total of 13 SSR primer sets was used and 84 polymorphic alleles were amplified. Seven ISSR primers yielded a total of 252 bands, of which 176 (89.1%) were polymorphic. Except for cultivars obtained from somatic mutations, all cultivars were easily distinguishable employing both methods. The similarity coefficient between cultivars ranged from 0.20 to 0.87 for SSR analysis and from 0.71 to 0.92 using the ISSR methodology. Dendrograms constructed using UPGMA cluster analysis revealed a phenetic classification that emphasises the existence of a narrow genetic base among the cultivars used, with the Portuguese cultivars revealing higher diversity. This study indicates that the results obtained based on the RAPD, AFLP, SSR and ISSR techniques are significantly correlated. The marker index, based on the effective multiplex ratio and expected heterozygosity, was calculated for both analyses (MI = 1.7 for SSR and MI = 8.4 for ISSR assays) and the results obtained were directly compared with previous RAPD and AFLP data from the same material. The SSR and ISSR markers were found to be useful for cultivar identification and assessment of phenetic relationships, revealing advantages, due to higher reproducibility, over other commonly employed PCR-based methods, namely RAPD and AFLP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
小麦雌蕊和雄蕊突变体与川麦28之间特异性ISSR标记筛选   总被引:1,自引:0,他引:1  
利用42条ISSR标记对小麦三雌蕊突变体(TP)和雄蕊同源转化为雌蕊突变体(HTS-1)与川麦28之间特异性的ISSR分子标记进行筛选,为利用ISSR标记定位Pis1基因和控制雄蕊同源转化成雌蕊的hts1和hts2基因奠定基础.结果表明:42条引物共扩增403个条带,有9条引物能在TP和CM 28之间扩增出差异条带,占所用引物的21.4%.有20条引物能在HTS-1和CM 28之间扩增出差异条带,占所用引物的47.6%.有21条引物能在TP与HTS-1之间扩增出差异条带,占所用引物的50%.每条引物最多能扩增出4条差异条带,大部分产生1~2条差异性条带.差异条带大小主要集中在250~750 bp之间.这也证明了ISSR标记是一种简单有效的分子标记,可作为SSR的一种重要补充标记用于遗传图谱的构建.  相似文献   

5.
8份剑麻种质亲缘关系的ISSR和RAPD分析   总被引:1,自引:0,他引:1  
为了揭示剑麻栽培品种的遗传多样性,利用ISSR和RAPD分子标记技术对8份剑麻种质的亲缘关系进行分析。结果表明,筛选后选用的8条ISSR引物和8条RAPD引物,分别产生了53条和66条扩增条带,其中多态性条带分别为44条和61条,多态性条带百分率分别为83.02%和92.42%。根据2种标记的扩增结果,用UPGMA法对8份剑麻种质进行聚类分析,供试材料之间具有较高的遗传多样性,其品种间遗传相似系数分别为0.59~0.80和0.52~0.76。2个标记的聚类结果基本一致,但有点差异,可将供试的8份剑麻种质划分为2类群,而且2个标记聚类结果呈显著相关性,相关系数为0.70。可见,剑麻种质资源的遗传多样性丰富。  相似文献   

6.
利用基因组DNA的RAPD、ISSR与SRAP等3种分子标记技术,以日本芜菁品种作为外类群,对来自于温州不同地区具有代表性的10个盘菜品种进行品种鉴定与遗传多样性分析。10个RAPD引物共产生多态性条带70条,多态率为71.7%;12个ISSR引物共产生142条清晰带,其中多态性条带70条,多态率为49.3%;8个SRAP引物组合共产生105条谱带,其中多态性谱带78条,多态性比率为74.3%,表明品种间存在较高的多态性。用单个引物NAURP299、NAUISR43以及SRAP引物组合mel/em2,都可以将11个品种完全区分开来。基于3种标记的聚类分析结果表明,11个材料可以分为3大类,一定程度上能够揭示品种之间园艺学性状的相似性及亲缘关系远近。  相似文献   

7.
应用SSR和ISSR标记分析栽培香稻品种的遗传多样性   总被引:27,自引:0,他引:27  
本研究利用24对SSR引物和36个ISSR引物,分析33份来源于亚洲10个国家的香稻品种的遗传多样性。分别获得93条和181条多态性片段,每个SSR座位可检测3~8个等位基因,平均为4.23个;每个ISSR引物可检测3~8个多态性位点,平均为5.03个。根据SSR和ISSR标记计算的品种间遗传相似系数分别在0.294~0.884之间和0.595~0.867之间。聚类分析表明,利用两种标记所得的聚类结果基本上一致,与品种所处的3种气候类型变化基本相符。进一步证实SSR和ISSR标记是研究水稻种质资源分类有效的工具。  相似文献   

8.
In recent years, microsatellites have become the most used markers for studying population genetic diversity. The increased availability of the DNA sequences has given the possibility to develop EST-derived SSR markers. A total of 1,927 ESTs of Eleusine coracana available in the NCBI database were mined for SSRs. Di-nucleotides are the most occurring motifs accounting for more than 50% of the repeats, of which GA was the most abundant motif and tetra-nucleotides are the least occurring motifs. Of the 132 markers identified, 30 primer pairs based were synthesized. SSR markers were used for variety discrimination and genetic assessment in 15 finger millet accessions; 20 primers showed polymorphism and 13 primers were identified as having a PIC value above 0.5. On the basis of the distribution of these polymorphic alleles, the 15 accessions were classified into two groups. This study has demonstrated the potential of EST-derived SSR primer pairs in finger millet. These primers will serve as valuable source for further breeding programs.  相似文献   

9.
This paper describes the relative efficiency of three marker systems, RAPD, ISSR, and AFLP, in terms of fingerprinting 14 rice genotypes consisting of seven temperatejaponica rice cultivars, three indica near-isogenic lines, three indica introgression lines, and one breeding line of japonica type adapted to high-altitude areas of the tropics with cold tolerance genes. Fourteen RAPD, 21 ISSR, and 8 AFLP primers could produce 970 loci, with the highest average number of loci (92.5) generated by AFLP. Although polymorphic bands in the genotypes were detected by all marker assays, the AFLP assay discriminated the genotypes effectively with a robust discriminating power (0.99), followed by ISSR (0.76) and RAPD (0.61). While significant polymorphism was detected among the genotypes of japonica and indica through analysis of molecular variance (AMOVA), relatively low polymorphism was detected within the genotypes of japonica rice cultivars. The correlation coefficients of similarity were significant for the three marker systems used, but only the AFLP assay effectively differentiated all tested rice lines. Fingerprinting of backcross-derived resistant progenies using ISSR and AFLP markers easily detected progenies having a maximum rate of recovery for the recurrent parent genome and suggested that our fingerprinting approach adopting the ‘undefined-element-amplifying’ DNA marker system is suitable for incorporating useful alleles from the indica donor genome into the genome of temperate japonica rice cultivars with the least impact of deleterious linkage drag.  相似文献   

10.
Lentil is the sixth most important pulse crop terms of production in the world, but the number of available and mapped SSR markers are limited. To develop SSR markers in lentil, four genomic libraries for (CA)n, (GA)n, (AAC)n and (ATG)n repeats were constructed. A total of 360 SSR primers were designed and validated using 15 Turkish lentil cultivars and genotypes. The most polymorphic repeat motifs were GA and CT, with a mean number of alleles per locus of 7.80 and 6.55, respectively. Seventy‐eight SSR primers amplified a total of 400 polymorphic alleles, whereas 71 SSR primers produced markers within the expected size range. For 78 polymorphic SSR primers, the average number of alleles per locus was 5.1 and PIC value ranged from 0.07 to 0.89, with an average of 0.58. A linkage map was constructed using 92 individual F2 plants derived from a cross between Karacada? × Silvan, with 47 SSR markers. The SSR markers developed in this study could be used for germplasm classification and identification and mapping of QTL in lentil.  相似文献   

11.
The microsatellite or simple sequence repeat (SSR) marker is the most preferred marker because of its many desirable properties. It is important to increase the genic and genomic resources particularly in legumes because the SSR markers currently available in chickpea, pigeonpea, horsegram, blackgram, and cowpea are very limited. In the present study, 201 pairs of SSR markers comprising of 172 genic and 29 genomic SSRs were screened against 11 chickpea genotypes, among which 153 produced monomorphic and 48 produced polymorphic bands. The polymorphic information content ranged from 0.152 to 0.373 for both genic and genomic SSRs. Among the polymorphic markers, two-three alleles were detected for genic and two-four alleles for genomic SSRs. A unique banding pattern could be found for all the genotypes within 48 polymorphic SSR markers and cultivar specific markers could be identified for seed purity test. We have also studied the ability of chickpea genic and genomic SSRs to amplify distantly related but important legumes viz., horsegram, blackgram, cowpea, pigeonpea, and soybean. Out of 201 chickpea SSR primer pairs, 66.7% in blackgram, 62.2% in horsegram, 61.7% in redgram, 54.7% in cowpea, and 62.7% in soybean produced amplification. The transferability of about 60.0% of the chickpea SSRs to distantly related legumes could be considered successful. In the present study, 134, 133, 126, 124, and 110 new SSR primers for blackgram, horsegram, soybean, redgram, and cowpea pulse crops, respectively, were identified. It is an important addition to the already available genomic resources in these crops. In addition, among genic primer pairs, 12 in horsegram, three in soybean, 13 in redgram, and eight in cowpea, and among genomic primer pairs, two in horsegram and four in redgram were polymorphic even in the two-three genotypes tested indicating their potentially for application in genetic studies and mapping.  相似文献   

12.
Microsatellites also known as SSR are the class of repetitive DNA sequences present throughout the genome of all eukaryotic organisms. The present study identified SSRs using biotinylated beads capture method. Ten sets of primers were designed based on sequences having at least (CT)10 repeats. A total of 27 accessions having a mix of both African (resistant) and Indian origin (resistant and susceptible) were assessed using 30 microsatellite markers. Amplification products were obtained for all 30 primers studied; 25 out of these primers were found to be polymorphic with 13 primers showing two alleles per locus. The current study identified markers which could differentiate between resistant and susceptible accessions and also segregate accessions based on geographical region. These informative SSR markers can be used in finger millet genetic improvement projects.  相似文献   

13.
An assessment of genetic diversity studies was undertaken to understand the level and pattern of diversity in 65 mango (Mangifera indica L.) genotypes of India including 20 commercial cultivars, 18 hybrids, 25 local genotypes and two exotic cultivars based on qualitative and quantitative fruit characters as well as RAPD and ISSR profiles. A considerable variation was observed in respect of three important qualitative characters namely table quality, fruit attractiveness and storage life of ripe fruits and potentially superior genotypes for the above traits were identified. A wide variation was noticeable regarding metabolite composition of pulp of ripe mango fruit with respect to total soluble solids, total sugar, reducing sugar, acidity, sugar:acid ratio, ascorbic acid and phenolic content. Fifteen RAPD primers yielded 27 monomorphic and 129 polymorphic bands with percent polymorphism averaging 82.7%. Of a total 70 ISSR bands generated from eight ISSR primers, 60 bands (85.71%) were found to be polymorphic. Cumulative band data from these two methods precisely arranged accessions into eight clusters which correspond well with their pedigree relationship. UPGMA dendrograms drawn using RAPD, ISSR and cumulative data showed highly similar grouping of genotypes on the basis of their parental origin. No clear-cut geographical separation was revealed among East, West, North and South Indian mango cultivars by neither of these molecular markers nor their combinations. This supports the common gene pool origin of mango as well as operation of similar selection pressure as the cultivar preferences in these areas are largely similar.  相似文献   

14.
Genetic diversity of four new yellow single crosses, five new yellow three-way crosses, and five yellow inbred lines of maize (Zea mays L.) was studied using different molecular (SSR, ISSR, and RAPD) and biochemical markers (seed storage protein content). All markers were able to clearly separate the inbred lines in one cluster from the different types of hybrids. The correlation among the different types of molecular markers was moderately high according to the Mantel’s test (e.g. 0.67 between SSR and ISSR, 0.42 between SSR and RAPD, and 0.65 between ISSR and RAPD), indicating that the three techniques are efficient for evaluating genetic diversity in the maize genotypes. The correlation of biochemical markers (seed storage protein SDS-PAGE) with SSR, ISSR, and RAPD markers was 0.61, 0.74, and 0.48, respectively. It can be concluded that both molecular and biochemical markers are efficient to study the genetic diversity in maize. Among the different types of molecular markers, SSR is a more accurate marker-type because of its co-dominance and stability of results. It can also be said that biochemical and molecular markers are positively correlated and the correlation ranged between moderate to high. This could suggest using both marker types, separately or together, for genetic diversity studies in maize.  相似文献   

15.
Genetic relationship and diversity among seven cabbage cultivars were analyzed using RAPD and SSR markers. These cultivars are of great commercial value in India and are confirmed for their reaction to black rot caused by Xanthomonas campestris pv. campestris. However, so far the extent of genetic diversity and relatedness has not been studied in these cultivars. A total of 17 selected RAPD primers generated 90 bands, 76 of which were polymorphic (84.44%). In addition, 27 selected SSR primers generated 67 amplified bands with 59 of which were polymorphic (87.6%). Though both the marker techniques were able to discriminate the cultivars effectively, analysis of combined data of markers (RAPD and SSR) resulted in better distinction of cultivars. By combining both the markers, a total of 157 bands were detected of which 135 bands (85.98%) were polymorphic, i.e. an average of 5.95 bands per primer. High level of polymorphism (> 85%) recorded with two different marker systems indicated a high level of genetic variation existing among the cultivars. Genetic relationship estimated using similarity co-efficient (Jaccard’s) values between different pairs of cultivars varied from 0.21 to 0.77 in RAPD, 0.42 to 0.82 in SSR, and 0.43 to 0.89 with combined markers. A high correspondence had been recorded between the values of genetic variations generated by UPGMA, clustering, and scatter plot diagrams. The cultivars ‘January King Sel. Improved’ and ‘Golden Acre’ are highly divergent cultivars as demonstrated by both the marker systems.  相似文献   

16.
Molecular diversity and association of simple sequence repeat (SSR) markers with rust and late leaf spot (LLS) resistance were detected in a set of 20 cultivated groundnut genotypes differing in resistance against both diseases. Out of 136 bands amplified from 26 primers, 104 were found polymorphic (76.5%). Cluster analysis (UPGMA) revealed two main clusters separated at 52% Jaccard's similarity coefficient according to disease reaction to rust and LLS. Based on the Kruskal–Wallis one-way anova and simple regression analysis three and four SSR alleles were found associated with rust and LLS resistance, respectively.  相似文献   

17.
Molecular markers provide novel tools to differentiate between the various grades of Basmati rice, maintain fair-trade practices and to determine its relationship with other rice groups in Oryza sativa. We have evaluated the genetic diversity and patterns of relationships among the 18 rice genotypes representative of the traditional Basmati, cross-bred Basmati and non-Basmati (indica and japonica) rice varieties using AFLP, ISSR and SSR markers. All the three marker systems generated higher levels of polymorphism and could distinguish between all the 18 rice cultivars. The minimum number of assay-units per system needed to distinguish between all the cultivars was one for AFLP, two for ISSR and five for SSR. A total of 171 (110 polymorphic), 240 (188 polymorphic) and 160 (159 polymorphic) bands were detected using five primer combinations of AFLP, 25 UBC ISSR primers and 30 well distributed, mapped SSR markers, respectively. The salient features of AFLP, ISSR and SSR marker data analyzed using clustering algorithms, principal component analysis, Mantel test and AMOVA analysis are as given below: (i) the two traditional Basmati rice varieties were genetically distinct from indica and japonica rice varieties and invariably formed a separate cluster, (ii) the six Basmati varieties developed from various indica × Basmati rice crosses and backcrosses were grouped variably depending upon the marker system employed; CSR30 and Super being more closer to traditional Basmati followed by HKR228, Kasturi, Pusa Basmati 1 and Sabarmati, (iii) AFLP, ISSR and SSR marker data-sets showed moderate levels of positive correlation (Mantel test, r = 0.42–0.50), and (iv) the partitioning of the variance among and within rice groups (traditional Basmati, cross-bred Basmati, indica and japonica) using AMOVA showed greater variation among than within groups using SSR data-set, while reverse was true for both ISSR and AFLP data-sets. The study emphasizes the need for using a combination of different marker systems for a comprehensive genetic analysis of Basmati rice germplasm. The high-level polymorphism generated by SSR, ISSR and AFLP assays described in this study shall provide novel markers to differentiate between traditional Basmati rice supplies from cheaper cross-bred Basmati and long-grain non-Basmati varieties at commercial level.The first two authors have equal contribution  相似文献   

18.
利用RAPD(Random Amplified Polymorphic DNA)和ISSR(Inter-simple Sequence Repeat)两种分子标记技术对20份韭菜栽培品种进行了遗传多样性研究。结果表明,筛选后选用的12个ISSR引物和15个RAPD引物分析分别产生了258和101条扩增产物带,其中多态性条带(即20个韭菜品种中一个或多个但不是全部具有的带)分别为132和40条,分别占总数的51.2%和39.6%。,也就是说12个ISSR引物和15个SSR引物对韭菜不同品种的扩增可分别产生51  相似文献   

19.
20.
The genetic variability and relationships among 11 cowpea genotypes representing two cultivars and nine elite genotypes were analyzed using 22 random amplified polymorphic DNA (RAPD) and nine inter-simple sequence repeat (ISSR) markers. ISSR markers were more efficient than RAPD assay with regards to polymorphism detection. But the average numbers of polymorphic loci per primer and resolution power were found to be higher for RAPD than for ISSR. Also, the total number of genotype specific marker loci, Nei’s genetic diversity, Shannon’s information index, total heterozygosity, and average heterozygosity were prominent in RAPD as compared to ISSR markers. The regression test between the two Nei’s genetic diversity indices showed low regression (0.3733) between ISSR and RAPD + ISSR-based similarities but maximum (0.9823) for RAPD and RAPD + ISSR-based similarities. The RAPD- and ISSR-generated cultivar- or genotype-specific unique DNA fingerprints able to identify the most diverse genotypes. A dendrogram constructed based on RAPD and ISSR combined data indicated a very clear pattern of clustering according to the groups (cultivars and elite genotypes). The results of principal coordinate analysis were comparable to the cluster analysis. Cluster analysis showed that most diverse genotypes (GP-125 — small size with good seed quality; GP-129, GP-90L — big size with poor seed quality) were separated from moderately diverse cultivars and genotypes. The genetic closeness among GP-129 and GP-90L, JCPL-42, and JCPL-107 could be explained by the high degree of commonness in these genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号