首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于T-S模糊模型的TDR土壤水分传感器标定方法研究   总被引:1,自引:0,他引:1  
利用TDR土壤水分传感器实现土壤水分数值的精确采集具有现实意义[1-3]。为了获得TDR土壤水分传感器水分含量测量所对应输出电压与实际土壤含水量的良好对应关系,在采用取土实验测量法获得实际水分含量数值与对应输出电压数值的基础上,利用Takagi-Sugeno模型逼进精度高、后件参数线性化等优点[2,4]对TDR土壤水分传感器  相似文献   

2.
基于差分信号控制的土壤含水率传感器设计   总被引:1,自引:1,他引:1  
研究土壤含水率的测定对于农作物生长,灌溉及农业自动化发展具有重要意义。该文针对传统含水率传感器电极输出信号谐波失真较大的问题,设计了一种差分信号控制的土壤含水率传感器。鉴于传感器电极输出的信号失真是由于土壤非线性因素引起的,该文利用集成时基计时器设计差分输入信号控制电路,减少输出信号的总谐波失真度。此外,建立相应的数学模型,得到土壤阻抗与信号周期变化关系。构建传感器硬件结构,通过微处理控制器测量信号周期得出土壤含水率变化数值。试验表明,传感器输出端的信号总谐波失真较传统结构减少12.56%。土壤质量含水率在5%~30%时,土壤含水率测试最大误差不超过4.89%,土壤阻抗测试误差不超过2%。  相似文献   

3.
基于真有效值检测的高频电容式土壤水分传感器   总被引:7,自引:4,他引:3  
土壤水分的测量是精细农业中实施节水灌溉的基础。基于真有效值检测技术,利用土壤的介电特性,设计了一个高频电容式土壤水分传感器,主要由电源滤波电路、100 MHz有源晶振、XC74UL14AA、探针电极和AD8361组成。其中,探针电极由印刷电路板制成并与主印刷电路板一体化成型。传感器以直流电压输出,分别在空气和去离子水中测得其输出范围为工作电压的20%~70%。通过2-异丙氧基乙醇、二氧六环和去离子水3种溶液配制了一系列不同等效土壤体积含水率的待测溶液,在不同工作电压下,对传感器进行了标定以及在5~40℃范围内以24.8℃基准进行了温度变异性试验。试验结果表明:传感器对工作电压有明显的依赖性,在特定含水率下传感器的输出电压随工作电压的升高而增加;特定工作电压下传感器的输出电压与土壤体积含水率呈线性负相关,其决定系数R2>0.987;温差越大则传感器的测量偏差也越大,最大偏差为4.44%。并配制土样对传感器进行了验证,最大误差为4.95%。  相似文献   

4.
便携式土壤湿度检测装置用于精准灌溉决策系统   总被引:1,自引:1,他引:0  
采用最先进的技术进行精准灌溉是现代农业发展的必然趋势,但在准确预测被监测区域的土壤湿度时,面临一个两难的处境:少量土壤湿度固定检测点不能良好地反映作物区域土壤墒情信息,而大量布置传感器检测点又使得投资成本较大。因此该文设计了一种便携式土壤检测装置,同时基于该装置构建了一个精准灌溉决策系统,并把该系统应用于田间的精准灌溉决策。该系统由便携式土壤湿度检测装置和上位机决策软件2部分组成,其中便携式土壤湿度检测装置由FDR原理土壤水分传感器MS-10、低功耗单片机C8051F410、蓝牙无线传输模块、数据显示模块以及部分外围电路组成,可以独立实现时间记录、数据存储和实时显示。经过试验标定,装置的允许最大误差为2.2%,设计精度为95%;上位机决策软件分为数据接收模块、分布式二进制一致性算法模块和系统操作界面3个子模块,分别采用Visual Basic、Matlab和Matlab GUI设计而成,实现对便携式装置所采集数据的无线传输、归一化处理和数据融合处理,能够根据不同区域划分和不同作物灌水下限进行相应的运算,从而得到估计精度较高、区域大小可调的多尺度精准灌溉决策信息。最后通过30 m×30 m草坪的土壤湿度为检测参数的田间验证,该系统的平均决策准确率大于90%,且可以根据需要增减检测点个数。因此既可以独立应用,也可以作为固定检测方式的有效补充,实现作物区域土壤湿度信息的精确采集,有效提高水资源利用率。  相似文献   

5.
三深度土壤水分传感器的研制及试验   总被引:5,自引:4,他引:1  
针对当前植物根区不同深度下土壤含水量测量存在的传感器安装困难、对原位土壤扰动大以及传感器间一致性差等问题,该文基于阻抗法设计了一种三深度土壤水分传感器。该传感器不仅可以同时测量3个不同深度的土壤含水量,并且在安装时对原位土壤扰动极小。试验标定结果显示,该传感器具有较高的精度,所测的土壤含水量与烘干法所得的实际含水量非常吻合,决定系数R2和均方根误差(RMSE,root mean square error)分别达到0.996和0.013 cm3/cm3;传感器可适用于多种不同质地的土壤,在3种不同质地土壤中的输出灵敏度均大于1V/(cm3/cm3)。传感器的输出与土壤体积含水量呈现良好的线性关系,对黏土、砂土及壤土的决定系数R2分别达到0.983、0.965和0.975;土壤水分入渗试验结果进一步表明,该传感器性能良好,3个不同深度的传感器电极具有较高的一致性,在壤土和砂土样本中3个深度传感器电极的输出,相对误差分别小于2%和5%。  相似文献   

6.
新型FDR土壤水盐一体传感器标定研究与应用   总被引:3,自引:0,他引:3       下载免费PDF全文
运用新型频域反射(FDR)技术和分频技术,实现传感器水盐同时测量。因土壤质地、容重等差异,土壤水盐标定是利用FDR监测土壤水盐过程中的必要环节。以东北壤土为试验对象,利用"由湿到干,由小到大"的土壤水盐运动规律,通过土柱试验,用烘干法和土壤溶液电导率法对FDR进行室内标定研究。同时,将时域反射(TDR)式水盐传感器作为对照系,进行稳定性、精准度比较。结果表明:1)经土壤水分标定曲线校正后,FDR式水盐一体传感器具有很高的测量精度,可达±1%~3%;2)在土壤里对同一水盐含量进行百次重复测定,TDR传感器水分平均值为20.07%,相对标准偏差为0.18%;盐分(电导率)平均值为0.29 m S/cm,相对标准偏差为11.06%;新型FDR传感器水分平均值为20.08%,相对标准差为0.21%;盐分(电导率)平均值为0.31m S/cm,相对标准差为8.49%。新型FDR土壤水盐一体传感器可用于农田土壤连续水盐监测,提供稳定、精确的基础数据,结合数据分析软件,指导种植生产。  相似文献   

7.
基于驻波率原理的土壤水分传感器的测量敏感度分析   总被引:10,自引:1,他引:10  
土壤水分测量方法中,有效测量范围(即测量敏感区域)是一个重要问题。该文运用探针的静电场分布,分析由基于驻波率(SWR)原理的快速土壤水分传感器的测量敏感度,分析了SWR型土壤水分传感器的有效测量土体,输出电压与土壤体积含水率之间的最大线形区域,得出了SWR型土壤水分传感器的最佳结构  相似文献   

8.
为了提高基于驻波比原理(Standing Wave Ratio,SWR)的土壤剖面水分传感器非接触式测量精度及传感器在田间土壤水分测量中的实用性,该研究基于电磁仿真软件和印刷电路板工艺设计了一种基于边缘电磁场理论的小型定向测量探头,并进行了探头阻抗变换电路的设计,最后借助矢量网络分析仪探究了探头测量与介质、电导率的关系。在论证检测原理有效性的基础上,首先采用High Frequency Structure Simulator电磁场仿真验证探头结构的合理性。并配置不同介电常数的介质溶液进行试验,进行了试验检验,确定了此剖面土壤水分传感器的阻抗特性及测量范围。同时,为了分析土壤电导率对测量结果的影响,配置不同水分、电导率梯度的土壤样本,利用矢量网络分析仪分析了探头阻抗与水分及电导率的关系,得出结论:在土壤含水率3%~56%、土壤电导率0~6 300 μS/cm时,水分测量受电导率影响的最大绝对误差6.33%。与ET-5、5TE两种商用传感器受土壤电导率影响精度性能进行对比,传感器在非盐碱土壤(电导率在0~6 300 μS/cm内)受土壤电导率影响的最大土壤体积含水率相对误差相比其他两款传感器减少了0.17%~5.27%,受电导率影响在非盐碱土壤测量时更小,且传感器探头具有体积小、成本低、非接触式定向测量受内部介质干扰较小等优点,基本满足非盐碱地土壤田间实际检测需求。研究成果可为土壤剖面水分测量提供理论基础与技术参考。  相似文献   

9.
土壤电导率的准确、实时和原位获取可为农业生产精准管理提供有效的数据支撑,为提高传统电流-电压四端法测量精度,该研究基于电流-电压四端法3种测量组态,开展土壤电导率主要影响因素(土壤含水率、电极入土深度、土壤坚实度和土壤处理方式)对电流-电压四端法的3种测量组态测量精度影响的试验。结果表明,Wenner和Schlumberger两种测量组态可较好的适用于不同土壤环境条件。进一步以Wenner和Schlumberger两种测量组态所测土壤电导率值为输入量,基于BP神经网络构建了双组态融合的土壤电导率回归模型,并在此基础上设计了一种土壤电导率测量装置,该装置主要包括JESTON nano、STM32单片机数据采集模块、传感器、激励源及差分放大模块等组件。工作稳定性试验结果显示,该装置在不同土壤电导率梯度条件下测量数据的标准偏差均小于0.43 μS/mm,田间性能对比试验结果显示,该装置测量数据的均方根误差值为0.18 μS/mm,测量精度优于传统单独测量组态和市面常用土壤电导率测量仪,以上结果表明所研制的土壤电导率测量装置具有较好的工作稳定性和测量精度。该研究可为田间土壤信息的实时原位采集提供一种高精度的检测工具和技术手段。  相似文献   

10.
电介质型水分传感器测定栽培基质含水率的标定模型   总被引:2,自引:1,他引:1  
土壤与基质的理化特性相差较大,土壤水分传感器测定基质含水率时有较大误差,不能直接用于基质含水率测定。为实现栽培基质水分快速检测,在不同配比的基质中采用电介质型EC-5土壤水分传感器进行了适应性测试。试验研究了温度、体积质量和电导率对传感器输出值的影响,采用多项式和线性回归处理方法,建立了基于温度、体积质量影响下的基质含水率标定模型。试验表明,经标定后,EC-5电介质型土壤水分传感器的测定含水率与实际含水率之间有较好的线性关系(R2>0.9791),且最大误差小于13%,因此,EC-5电介质型土壤水分传感器经标定后可作为基质的快速检测设备。  相似文献   

11.
基于频域法的便携式无线土壤水分测量装置设计与试验   总被引:4,自引:4,他引:0  
针对农田土壤水分测量的实际需要,研制了一种便携式无线土壤水分测量装置。该装置结构一体化设计采用"T"型结构,将土壤水分传感器和信息采集与发送单元融合,可在0~300 mm的不同深度下测量土壤水分,并采用蓝牙传输技术,将测量数据实时发送给Android手机,手机可通过App软件对数据进行分析处理,实现了农田数据的大容量存储和智能化处理。在实验室环境下,使用砂土和壤土2种土样对测量装置进行了标定试验,土壤容积含水率与传感器输出电压服从二次曲线关系,决定系数均达到0.99以上;将测量装置与波兰Easy Test TDR土壤测试仪进行对比试验,二者测量结果呈线性相关关系,决定系数为0.987。试验结果表明该装置可准确测量土壤水分含量。  相似文献   

12.
茶园信息采集无线传感器网络节点设计   总被引:9,自引:7,他引:2  
针对茶园中所存在的无线通信障碍问题,该文设计了一款适合茶园信息采集的无线传感器网络节点。节点以ATmega128为核心,nRF905射频芯片及其外围电路作为无线通信模块,SHT11空气温湿度传感器和TDR-3土壤含水量传感器及其外围电路作为传感器模块,并以该节点为硬件平台编写了通信协议、应用程序和后台管理软件。分析、测试了节点的功耗和通信距离,在空旷地带,节点的有效通信距离达到150 m,与Micaz节点对比室内外通信距离分别提高了200%和150%。在广东省英德茶园基地进行了组网试验测试,结果表明:网络平均丢包率为0.84%,传感器感知精度达到98.2%,能够满足茶园信息采集的应用要求。  相似文献   

13.
针对探针式土壤水分传感器插入土壤后因反馈点固定而需大量布点、成本高、破坏耕层等问题,该研究提出一种基于法布里-珀罗干涉近红外传感器的非接触式土壤墒情在线检测系统。系统硬件部分由机载自动检测装置、电气控制箱和北斗双天线实时差分定位系统(Real Time Kinematic,RTK)组成。整套系统样机的试制包括:传感器的选型和模块设计封装、升降检测装置设计、传感器避障与采样点北斗定位、土壤含水量预测建模、软件中的二次开发和系统与润禾2ZBA-2型移栽机的集成等。田间试验结果表明:当移栽机以0.3 m/s速度行进时,土壤水分传感器参比校准后进行土壤水分的测定,5 s内工控机上实时显示水分含量值,水分含量预测值与实测值的相对误差范围为0.18%~14.46%,平均相对误差7.77%,所测水分值结合北斗RTK系统测得的定位坐标生成土壤表层含水率分布图,为后续喷灌、滴灌等变量灌溉提供参考依据。  相似文献   

14.
为提高水资源利用率和灌溉智能化管理的需要,设计了以无线传感器网络技术为核心的荔枝园节水灌溉控制系统,该系统的无线通信模块选择CC2530模块,传感器模块包括空气温湿度传感器DHT22,光照强度传感器GY-30,土壤水分含量传感器TDR-3以及一些外围电路,精确采集荔枝园温度、湿度、光照度和土壤含水率等多项环境信息,通过无线传感器网络、通用分组无线服务技术(General Packet Radio Service,GPRS)和互联网进行数据的传输,保证了传输的实时性和远程性,实现了对荔枝园环境的实时监控;同时,远程服务器和网站上都对荔枝园的土壤含水率的阈值进行了设定,当土壤含水率的值超过了阈值,服务器或者网站就会自动发送相关命令对相应的电磁阀进行控制,实现双向控制。分析、测试了系统的功耗和通信距离,在空旷地带,节点的双向有效通信距离达1 205 m,在荔枝园中双向有效通信距离达81.5 m。在传感器节点系统工作周期为30 min情况下,根据试验结果估算出,两节额定容量为3 000 m A·h的3.7 V锂电池串联可使传感器节点持续工作时间最大为500 d,可使电磁阀控制节点工作5 a以上。试验结果表明,该系统运行稳定,网络平均丢包率为3.87%,能够准确监测荔枝园信息采集和控制电磁阀工作,实现和控制荔枝园智能节水灌溉双向通信。  相似文献   

15.
为实现室内竖直土柱入渗性能的自动检测,研制了一种土柱入渗性能自动检测装置。该装置主要由传感器位置调节装置、土样盛放装置、供水装置、检测和控制模块、电源模块和上位机显示存储模块组成,采用压力应变式传感器检测入渗过程的累积入渗量,采用介电常数土壤水分传感器检测土壤含水率的变化,进而推断湿润锋的运移位置。基于这2种传感器,实现土柱入渗过程自动检测。采用水头为10 mm,容重为1.15、1.20和1.25 g/cm~3的红壤土进行室内土柱入渗试验,检验该装置的性能。结果表明:1)9个试验和18个检测位置,土壤水分传感器进出土柱成功率为100%,表明该装置运行可靠;2)与烘干法相比,土壤水分传感器检测得到土壤含水率的最大相对误差为-4.4%,检测结果比较准确;3)与人工观测湿润锋位置相比,土壤水分传感器推算出的湿润锋位置最大相对误差为-12.9%,说明土壤水分传感器检测湿润锋的运移效果比较明显;4)压力应变式传感器检测累积入渗量与人工实测得到的数据对比,最大相对误差为2.27%。该装置可作为土柱入渗自动检测试验平台。  相似文献   

16.
针对薄层热风干燥过程自动称量精度受温度波动、气流扰动及机械振动等因素影响的问题,该研究研制了薄层热风干燥装置及其控制系统,以实现干燥过程物料质量及含水率的自动获取、及时查看和数据存储。系统改进了传统称量结构,采用悬吊称量的方式,将称量传感器置于干燥装置外,与干燥环境相隔离以提高称量传感器使用寿命;采用变频器输出频率表征风速的方式,有效避免了热式风速传感器在变温环境中的测量误差;通过称量传感器温度-质量的归一化偏差校正方法及“停风-稳定-称量-恢复”准静态的自动称量流程,开展了温度波动、气流扰动误差特性及装置验证试验,保证了干燥过程中物料含水率的准确获取。试验表明:恒载标定时,采用温度-质量归一化偏差校正方法校正后的质量与恒载质量最大偏差值为0.368 g,与实测质量相比,平均绝对百分比误差降低了84.4%,测量不确定度降低了72.2%;采用停风检测方案后,实测质量与恒载质量的最大偏差值由37.1 g降至0.31 g;物料加载时,在干燥温度35、45及55℃条件下,以手动称量方式下获取的质量及含水率为标准值,自动称量方式下的质量绝对误差分别为0.337、0.415和0.472 g,含水率...  相似文献   

17.
附加电阻法快速测定土壤含水率的试验   总被引:8,自引:4,他引:4  
为了消除电容土壤水分检测中电导影响,提出了基于附加电阻的高频电容土壤水分测定技术,分析了高频电容土壤水分传感器的机理, 建立了基于附加电阻的高频土壤水分数学模型,通过求解土壤水分引起的电容因子,消除了电导的影响,设计了基于附加电阻的平行板电容传感器土壤水分测试电路,并进行土壤测试试验。结果表明:土壤水分引起的电容值与土壤的质量含水率在1%~22%范围内呈线性关系,且基于附加电阻的高频电容土壤水分的测试值 小于2%。  相似文献   

18.
为优化土壤水分传感器的埋设位置,该文针对宁夏日光温室滴灌黄瓜田间的土壤水分传感器埋设位置进行优化试验,确定出最佳埋设深度和宽度。利用最小二乘法对澳大利亚生产的MP406土壤水分传感器进行标定,得到水分利用效率的拟合值与实测值的相关性系数为0.9906。设计了多路数据自动采集监测与灌溉系统,可同时获取不同处理的18个水分传感器数据,通过远程客户端实时下载和监控水分数据并实现自动灌溉,通过远程手机短信监控功能,进行手机短信命令控制一个或多个处理的实时灌溉,系统可同时测量不同处理的灌水量。计算水分利用效率和产量,分析传感器水分数据的差异和相关系数,确定出土壤水分传感器在宁夏日光温室滴灌黄瓜田间的最佳埋设深度和宽度位置,该研究方法为确定土壤水分传感器的埋设深度及宽度提供可行的参考方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号