首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

2.
Plant volatile compounds, including terpenes, are known to be involved in the rice defense system. In the present analysis of a terpene synthase, OsTPS18, in rice, we found that OsTPS18 was localized in the cytoplasm and synthesized the sesquiterpenes (E)-nerolidol and (E)-β-farnesene. The amounts of (E)-nerolidol and (E)-β-farnesene increased after jasmonic acid (JA) treatment. (E)-Nerolidol had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo). These results suggest that (E)-nerolidol plays an important role in JA-induced resistance against Xoo and that it functions as an antibacterial compound in rice.  相似文献   

3.
Pyricularia oryzae (rice blast) conidial development at pre-penetration stage determines success or otherwise of infection inside the rice host plants. Studies on conidial germination and growth on the leaf surface in commercial rice (Oryza sativa) report differently, dependent upon host type and level of blast resistance. Although wild rice (O. australiensis) is known to be an alternative host of blast, the interaction between P. oryzae conidia and wild O. australiensis on its leaf surface has not been previously studied. We found significant (P?<?0.001) differences in conidial development between two blast isolates with different virulence in terms of conidial germination, germ tube growth and appressoria formation on both wild and cultivated rice. Conidial germination at 6 h post-inoculation (hpi) for the virulent isolate was significantly (P?<?0.001) delayed. Germ tubes of the avirulent isolate conidia grew significantly (P?<?0.001) faster and with significantly (P?<?0.001) longer germ tubes than from virulent conidia. Appressoria development for the virulent isolate was significantly (P?<?0.001) faster at its later growth stages of 12 and 18 hpi when approximately 100% of germ tubes formed appressoria. In contrast, formation rate of appressoria for the avirulent isolate was significantly (P?<?0.001) slower and only reached 76% of germ tubes forming appressoria. Appressoria formation on O. australiensis was significantly (P?<?0.001) greater than the formation on O. sativa for both virulent and avirulent P. oryzae at 12 hpi, a clear indication that host type influences the extent of appressoria formation.  相似文献   

4.
Clubroot disease caused by Plasmodiophora brassicae is one of the most serious diseases in cruciferous crops. To classify isolates, we developed simple sequence repeat (SSR) markers for P. brassicae. Twenty-four Japanese isolates were used in this study: 12 isolates of an unknown pathotype from the Kyoto Prefecture, as well as 12 isolates of known pathotypes, including three single-spore lines. From the 12 isolates from Kyoto Prefecture, 11 were classified into either pathotype 2 (three isolates) or 4 (eight isolates). We designed 23 SSR markers based on the P. brassicae genome, of which 11 markers from intergenic regions showed polymorphisms in the 24 isolates. Many haploid isolates belonging to pathotypes 2 and 4 were monomorphic, and typical alleles were detected in some isolates not belonging to pathotype 4. Two bands were detected for eight SSR loci in five isolates, indicating that different genotypes were mixed in these isolates. We constructed a phylogram based on the 11 polymorphic SSRs. Pathotypes 2 and 4 formed a cluster, from which pathotypes 3 and 1 were successively placed. These results strongly suggest a close genetic relationship between isolates in pathotypes 2 and 4, consistent with our finding that isolates in these two pathotypes were found at one collection site. In combination with pathotype classification and other marker systems, the SSR markers can be used for more detailed analyses to improve the control of clubroot disease.  相似文献   

5.
6.
The virulence of 29 isolates of Phytophthora infestans collected in potato fields in Hokkaido, Japan, in 2013 and 2014, was tested for race identification. Thirteen different races were identified, each of which had five to eight virulence factors. All of the isolates caused a virulent reaction against plants with R1 and R7, and most of the isolates caused a virulent reaction against plants with R3, R4, R10, and R11. On the other hand, no isolate was virulent against plants with R9. These results demonstrate that the current Japanese P. infestans population is more complex than the population in the 1990s from the viewpoint of race.  相似文献   

7.
Ascochyta blight of lentil (Lens culinaris ssp. culinaris) is caused by Ascochyta lentis. The disease causes severe damage to all aerial parts of the plant and may lead to total crop loss during extremely severe epidemics. To identify qualitative differences in resistance within Australian lentil crops, variation in virulence was examined among 17 isolates of A. lentis on six differential lentil genotypes (ILL7537, ILL5588 (cv. Northfield), ILL6002, ILL5722 (cv. Digger), ILL481 (cv. Indianhead) and CIPA203 (cv. Nipper)). Six distinct virulence patterns were identified, with Pathotype I (AL4) being highly virulent, causing disease on all genotypes except ILL7537 and pathotype VI (Kewell) exhibiting low virulence on all genotypes. Histopathology studies were carried out to further understand interaction differences between isolate-host combinations and add to the knowledge of possible resistance mechanisms underlying lentil’s defence to the pathogen. The infection process was compared between lentil genotypes with different levels of resistance and isolates with different levels of virulence. Microscopic and biochemical differences were observed between compatible and incompatible interactions, which were related to time-after-inoculation, with slower responses noted in susceptible lentil genotypes. Relatively fast release of reactive oxygen species (ROS) and a subsequent hypersensitive response (HR) was central to initial defence at the point of penetration in the most resistant lentil genotypes.  相似文献   

8.
Rice blast is the most serious disease threat to rice production worldwide. It is difficult to control due to the complex diversity and wide geographic distribution of the causal pathogen Magnaporthe oryzae. In Australia, rice blast occurs in northern Australia but remains exotic to the main south-eastern rice growing area; however, there is the potential for rice blast to threaten this area; in addition, rice production is currently expanding from south-eastern Australia into northern Australia, which makes rice blast a major concern and challenge to rice industry in Australia. Prior to this study, there was lack of information on the race status of M. oryzae present in Australia and on how to manage the disease through host resistance. The races of rice blast isolates collected in northern Australia was characterised based on the disease reactions of eight standard rice differentials used in an international race differential system. The following studies revealed genes conferring resistance to these races through investigating the responses of 25 monogenic rice lines with targeted resistance gene against different races. The rice blast isolates were characterised into five races: IA-1, IA-3, IA-63, IB-3 and IB-59. Genes Pi40, Piz-t, Pi9, Pi5(t) and Pi12(t) exhibited resistance to all the isolates belonging to five races. In addition, two genes showed complete resistance to multiple races, viz. Pi9 that showed complete resistance to races IA-1, IA-3, IA-63 and IB-3 and Pita2 that had complete resistance to races IA-3, IB-3 and IB-59. This study provides information about the races of M. oryzae in Australia. Genes identified conferring resistance to multiple races will not only streamline the identification via molecular markers of imported rice varieties with resistance to rice blast in Australia, but will also allow the Australian rice breeding program to develop new varieties with broad-spectrum resistance to rice blast and pyramid multi-gene resistance into Australian rice varieties.  相似文献   

9.
Rice blast is a devastating fungal disease resulting in major losses to rice crops. Owing to continuous acquisition of resistance by the causal fungus, several fungicide chemicals are no longer effective. Therefore, there is a need to identify natural components and develop new agents to control fungal pathogens. We previously demonstrated that the culture filtrate of Biscogniauxia sp. O821 inhibited infection behavior of Magnaporthe oryzae and subsequent blast lesion formation. In the present study, we isolated a new compound, (3aS,4aR,8aS,9aR)-3a-hydroxy-8a-methyl-3,5-dimethylenedecahydronaphto[2,3-b]furan-2(3H)-one (HDFO), from the culture filtrate of Biscogniauxia sp. O821 and determined its molecular weight as 248. The HDFO structure was determined by electrospray ionization-mass spectrometry and nuclear magnetic resonance spectroscopy after purification with column chromatography and high-performance liquid chromatography. The structure of this antifungal compound was similar to that of alantolactone and isoalantolactone. The growth inhibition zone against M. oryzae in presence of HDFO was observed at Rf 0.5–0.6 on a thin layer chromatography plate. HDFO inhibited conidial germination of M. oryzae in a dose-dependent manner (1–200 ppm). Furthermore, blast lesion formation was significantly suppressed by HDFO at over 5 ppm. These results suggest that HDFO from the culture filtrate of Biscogniauxia sp. O821 can protect rice from rice blast disease caused by M. oryzae. This is the first report that HDFO produced by Biscogniauxia sp. can serve as an antifungal compound against M. oryzae.  相似文献   

10.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

11.
Clubroot, caused by the protozoan parasite Plasmodiophora brassicae Woronin, is one of the most damaging diseases of Brassica napus worldwide. Resistant plant material is valuable for cultivation in all areas of high incidence of the disease and intensive growth of oilseed rape. We have evaluated clubroot resistance, plant morphology and seed quality in 15 lines of an F4 generation and selected six lines of F5 generation of interspecific hybrids obtained from a cross between a male sterile line of B. napus ‘MS8’, selected from resynthesized oilseed rape (B. rapa ssp. chinensis × B. oleracea var. gemmifera) and an ecotype of B. rapa ssp. pekinensis. Clubroot resistance was evaluated using a bioassay with P1-P5 pathotypes of P. brassicae (according to the classification of Somé et al. 1996). The resistance to the pathotype P1 was successfully fixed in the F5 generation, and improved in some lines in respect to the pathotypes P2-P4. The resistance to P1 and the other tested pathotypes was not linked. Characterization of plant material included recent techniques of FISH and BAC-FISH with a special focus on the analysis of ribosomal DNA (rDNA) of selected individuals. Two hybrid lines combined high levels of resistance with appropriate plant morphology, good seed quality traits and a stable chromosome number and arrangement. Recent techniques of ‘chromosome painting’ provided good insight into chromosome organization in the hybrids obtained, and offered opportunities of further improvement of the breeding process.  相似文献   

12.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

13.
An ethyl acetate extract of a culture filtrate (ECF) from an unidentified fungal isolate O821 was evaluated for antifungal activity against the rice pathogen Magnaporthe oryzae. The O821-ECF significantly inhibited spore germination, appressorium formation, and mycelial growth of M. oryzae, and its antifungal activity was heat-stable. It also significantly suppressed the number and size of blast lesions. In an analysis of the ITS sequence of this isolate, it shared similarities with species of the fungus Biscogniauxia. These results suggest that isolate O821 of the genus Biscogniauxia produces a heat-stable antifungal compound(s) in its culture filtrate.  相似文献   

14.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

15.
The rice blast fungus Pyricularia oryzae mainly overwinters in infested rice organs stored indoors, whereas it is difficult or impossible for the pathogen to overwinter outdoors. By contrast, blast pathogens infecting weed grasses must overwinter outdoors every winter to continue their life cycle. In this study, we investigated the overwintering location of P. oryzae infecting wild, green, and giant foxtails to identify the mechanism that enables them to overwinter. Recovery of P. oryzae was tested in seeds of wild foxtail collected from the soil surface from December to April over three winters. No P. oryzae was recovered from the seed samples of any wild foxtail collected at the ends of the three experimental periods in April. Recovery was also tested from blast lesions on leaves and seeds sampled from withered green foxtail in the experimental field of Saga University from November to April during two winters. In contrast to seeds on the soil surface, P. oryzae survived in lesions and seeds at the ends of the two experimental periods during April, suggesting that withered host plants could be the overwintering site of the pathogen. Rice plants are reaped and removed from paddy fields after harvesting. Thus, withered, standing plants may be available solely to blast pathogens infecting wild grasses, possibly explaining the higher winter survival frequency of weed pathogens than that of rice blast pathogens outdoors.  相似文献   

16.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

17.
A disease caused by Alternaria alternata occurred on the leaves of European pear cultivar Le Lectier in Niigata Prefecture, Japan, and was named black spot of European pear. In conidial inoculation tests, the causal pathogen induced not only small black lesions on the leaves of European pear cultivar Le Lectier, but severe lesions on the leaves of apple cultivar Red Gold, which is susceptible to the A. alternata apple pathotype (previously called A. mali) causing Alternaria blotch of apple. Interestingly, the apple pathotype isolate showed the same pathogenicity as the European pear pathogen. HPLC analysis of the culture filtrates revealed that A. alternata causing black spot of European pear produced AM-toxin I, known as a host-specific toxin of the A. alternata apple pathotype. AM-toxin I induced veinal necrosis on leaves of Le Lectier and General Leclerc cultivars, both susceptible to the European pear pathogen, at 5?×?10?7 M and 10?6 M respectively, but did not affect leaves of resistant cultivars at 10?4 M. PCR analysis with primers that specifically amplify the AM-toxin synthetase gene detected the product of expected size in the pathogen. These results indicate that A. alternata causing black spot of European pear is identical to that causing Alternaria blotch of apple. This is the first report of European pear disease caused by the A. alternata apple pathotype. This study provides a multiplex PCR protocol, which could serve as a useful tool, for the epidemiological survey of these two diseases in European pear and apple orchards.  相似文献   

18.
In this study, the Estonian population of Phytophthora infestans was characterized with mating type, sensitivity to metalaxyl, virulence on 11 potato R-gene differentials and 12 SSR markers to show the outcome of potential sexual reproduction in the population. During the three years 2010–2012, 141 P. infestans isolates, collected from 23 potato fields, showed quite a high and stable frequency of the A2 mating type, 48% of the total population. In 87% of all sampled potato fields, both mating types were recorded, suggesting continuous sexual reproduction of P. infestans and possible oospore production. Metalaxyl-sensitive isolates prevailed in all three years (68 out of 99 isolates). Amongst the 95 isolates tested, 51 virulence races were found. The race structure was diverse, and most pathotypes were unique, appearing only once; the two most common pathotypes, 1.2.3.4.6.7.10.11 and 1.2.3.4.7.10.11, comprised 35% of the population. The P. infestans population was genetically highly diverse and most of the multilocus genotypes (MLGs) appeared only once. Furthermore, all of the MLGs appeared in only one of the three sampling years. Our results confirm that the high diversity in the Estonian P. infestans population is most likely the result of frequent sexual reproduction, which benefits the survival, adaptability and diversity of the pathogen in the climate of North-Eastern Europe.  相似文献   

19.
Wilt disease of lentil caused by Fusarium oxysporum f.sp. lentis (Fol) is one of the most important diseases affecting lentil worldwide. Differential response of six lentil accessions with reported differences in the level of resistance to Fol was studied micro and macroscopically. Penetration took place through root epidermal cells without formation of any specific structure. Hyphae reached the stele within two days after inoculation (dai) and subsequently invaded xylem bundles having colonised the endodermis, vascular system and even vascular parenchyma phloem already by 4 dai. Resistance was observed as a quantitative trait in all studied accessions resulting from varying levels of xylem occlusion with gum-like substances and of degree of colonization observed only after 4 dai. An indication of a qualitative resistance was detected in accession BGE019696 inoculated with pathotype 1 as a fast secretion of phenolic compounds at 4 dai. Plasmolysis of cytoplasm, lignification and accumulation of phenolic compounds, gum-like substances and/or tyloses were observed from 15 to 30 dai. As a result of the various operative mechanisms, significantly lower numbers of propagules were recovered from roots by 15 dai, and a retardation of disease was measured as lower disease index by 30 dai in plants inoculated with pathotype 1, but not in those inoculated with pathotype 7.  相似文献   

20.
Rice production is currently expanding from the south-eastern regions of Australia into northern Australia where indigenous species of wild rice occur widely. A survey of fungal diseases on wild (Oryza australiensis, Oryza spp.) and cultivated rice (Oryza sativa) in North Queensland, Australia, in May 2014 revealed a diverse range of fungal genera species, including important pathogens of cultivated rice. Whilst a single isolate of Magnaporthe oryzae (causal agent of rice blast) was obtained from wild rice, Bipolaris oryzae (causal agent of brown spot) was the predominant pathogen detected under North Queensland conditions. For the first time for Australia, we report Rhizoctonia oryzae-sativae (causal agent of aggregate sheath spot) occurring on wild rice. Other pathogens detected on wild rice included Curvularia lunata, Cochliobolus intermedius, Cochliobolus geniculatus, and Fusarium equiseti present in the majority of wild rice samples. Nearby cultivated rice fields harboured additional pathogens not found in wild rice including Fusarium graminearum, Leptosphaeria spegazzinii and Cochliobolus lunatus, causing scab disease, glume blight and leaf blight, respectively. We also confirmed that Bipolaris oryzae from wild rice can infect cultivated rice. This study highlights the importance of wild rice species as alternative hosts harbouring pathogens of cultivated rice and the likely disease threats to expansion of cultivated rice into the same region(s) where wild rice is endemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号