首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

2.
Trichoderma spp. are used as antagonists against different pathogens. Despite many possibilities of using Trichoderma as an antagonist, there are gaps in the knowledge of the interaction between Trichoderma, cassava and Scytalidium lignicola. This fungus causes cassava black root rot and is an inhabitant of the soil, so it is difficult to control. Antagonists may contribute to the possible induction of resistance of plants because, when exposed to such pathosystems, plants respond by producing antioxidative enzymes. The test for potential inhibition of growth of S. lignicola CMM 1098 in vitro was performed in potato-dextrose-agar with two Trichoderma strains T. harzianum URM3086 and T. aureoviride URM 5158. We evaluated the effect of the two selected Trichoderma to reduce the severity of cassava black root rot and shoots. Subsequently, the production of enzymes (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase) was evaluated in cassava plants. All two Trichoderma strains show an inhibition of the growth of S. lignicola CMM 1098. The most efficient was T. harzianum URM 3086, with 80.78% of mycelial growth inhibition. T. aureoviride URM 5158 was considered the best chitinase producer. All treatments were effective in reducing severity, especially treatments using Trichoderma. Cassava plants treated with T. aureoviride URM 5158 had the highest enzyme activity, especially peroxidase and ascorbate peroxidase. Trichoderma harzianum URM3086 and Trichoderma aureoviride URM 5158 were effective in reducing the severity of cassava black root rot caused by S. lignicola CMM 1098.  相似文献   

3.
Phytophthora species are soil-borne pathogens that damage plants in both agro- and natural ecosystems. To suppress the devastating pathogen, we generated a root-specific expression system using a specific promoter (pPRP3) conferring elevated expression of the target gene in roots that are very susceptible to soil-borne pathogens. To verify root-specific expression, we compared β-glucuronidase (GUS) expression driven by a constitutive or root-specific promoters in shoots and roots. In histochemical and fluorometric assays, GUS activity was detected in whole tobacco plants when GUS expression was driven by p35S, but was detected only in the roots by pPRP3. We then expressed a pepper defensin (J1–1) gene in tobacco to elucidate its effect on plant resistance. The accumulation of J1–1 was also tissue-specific in transgenic tobacco plants. Finally, transgenic plants carrying GUS or J1–1 genes in combination with p35S or pPRP3 were inoculated with Phytophthora parasitica var. nicotianae and Pythium aphanidermatum. Disease symptoms were significantly suppressed in transgenic plants that accumulated J1–1, regardless of the promoter used. Furthermore, the expression of PR genes was induced in J1–1 transgenic plants, exhibiting much higher levels in p35S-driven J1–1 plants than in pPRP3::J1–1 plants. These results demonstrated that J1–1 transgenic plants were primed for enhanced expression of PR genes, which provided synergistic effects with the defensin for disease resistance.  相似文献   

4.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

5.
6.
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in São Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.  相似文献   

7.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

8.
9.
10.
A Carica papaya plant with severe yellow leaf mosaic, leaf distortion, and systemic necrosis was found in the municipality of Piracicaba, state of São Paulo, Brazil. Transmission electron microscopy (TEM) analysis revealed the presence of potyvirus-like particles and bacilliform particles similar to those of the Alfamovirus genus. The potyvirus was identified as Papaya ringspot virus-type P (PRSV-P). Biological, serological, and molecular studies confirmed the bacilliform virus as an isolate of Alfalfa mosaic virus (AMV). Partial nucleotide and amino acid sequences of the coat protein gene of this AMV isolate shared 97–98% identity with the AMV isolates in the GenBank database. This report is the first of the natural infection of papaya plants by AMV.  相似文献   

11.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

12.
Drimia maritima (squill) is a historically important medicinal plant. During the spring of 2016, small, yellow leaf spots, which became brown and finally necrotic, were observed on squill plants in Kohgiluyeh and Boyer-Ahmad Provinces in Iran. A fungus was consistently isolated from infected leaves and identified as Alternaria alternata based on morphological and phylogenetic analyses. Pathogenicity tests confirmed A. alternata to be the causal agent of the newly observed leaf spot disease. This is the first report of leaf spot on D. maritima caused by A. alternata in the world.  相似文献   

13.
Bacterial pathogens of onion (Allium cepa) plants and their undetected presence in seed can cause substantial losses to onion producers. In this study, 23 Pseudomonas syringae strains were isolated from five onion plants and 18 onion seeds. The symptoms on leaves and seed stalks were irregular lesions with necrotic centres and water soaked margins. The aim of the study was to characterize these P. syringae strains using Biolog GN III carbon source utilization, multilocus sequence typing (MLST) based on partial sequences of four housekeeping genes (cts, gapA, gyrB and rpoD), and to determine whether or not the strains were pathogenic on onion (cv. Granex 33), chive (Allium schoenoprasum cv. Grasiue), leek (Allium porrum cv. Giant Italian) and spring onion (Allium fistulosum cv. Salotte) plants. Both Biolog analysis and MLST analysis separated onion strains into two clusters, one supporting the existence of a new pathovar of P. syringae, and the other corresponding to P. syringae pv. porri. Pseudomonas syringae strains belonging to the new pathovar we pathogenic only on onion plants of the Allium spp. tested. The results of this study revealed that bacterial blight of onion in South Africa is caused by two pathovars of P. syringae sensu lato, namely, the newly described pathovar, allii, and P. syringae pv. porri. The symptoms caused by these two pathovars in the field were indistinguishable.  相似文献   

14.
The aim of this study was to identify the Colletotrichum species associated with anthracnose symptoms in coffee (Coffea arabica L.) plantations in northern Puebla, Mexico. In 2013, five surveys were conducted in different production areas and at different altitudes. Symptomatic leaves, shoots, and ripe and unripe fruits of the coffee variety Red Caturra were collected. Isolates were obtained and the Colletotrichum species were identified morphologically and characterized by multilocus sequence analyses of the ACT, CAL, GAPDH, and TUB2 genes and the rDNA region. Additionally, pathogenicity tests were conducted using six isolates. We identified C. gigasporum, C. gloeosporioides, C. karstii (two isolates), C. siamense, and C. theobromicola. This is the first report of these five species infecting leaves of coffee. The symptoms caused by these species were characterized, but the species causing Coffee Berry Disease was not found. This is the first report of a complex of species affecting coffee plants in the same geographical area in Mexico, and suggests that other complexes of species may be important pathogens in coffee-producing areas elsewhere.  相似文献   

15.
A severe outbreak of southern blight disease of China aster was observed during the post rainy season (September–November 2015) in the Mysore and Mandya Districts of Karnataka, Southern India. The disease incidence ranged between 12 and 47%. The typical disease symptoms include water-soaked lesions on leaves, stems and on the lower stem surfaces followed by quick wilting of the whole plant with abundant production of sclerotia near the stem-soil interface. The associated fungal pathogen was isolated on potato dextrose agar (PDA) medium, on which numerous reddish-brown sclerotia were seen. A total of 26 fungal isolates were isolated and studied for the mycelial compatibility. Isolate SrCCM 1 was used for pathogenicity analysis. The results of the study showed that, there was no variation among the isolates tested. Molecular identification of the pathogen by ITS-rDNA sequences of S. rolfsii showed 100% similarity with reference sequences. Based on the cultural, morphological and molecular characteristics, the fungal pathogen was identified as Sclerotium rolfsii Sacc. (Sexual morph: Athelia rolfsii (Curzi) C.C. Tu & Kimbr). Pathogenicity tests were performed on healthy leaves, roots and stems. Typical disease symptoms on leaves, stems and roots were evident after 5, 8 and 10 days of post-inoculation. Sclerotium rolfsii is known to cause diseases in economically important crop plants. However, no reports are available on the occurrence of S. rolfsii on China aster in India.  相似文献   

16.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

17.
Bradyrhizobium sp., a slow-growing nitrogen-fixing symbiotic bacterium of legumes and common root endophyte of other plants, is closely related to Candidatus Liberibacter asiaticus (Las), the uncultured putative pathogen associated with citrus huanglongbing (HLB). In attempts to isolate Las on a low-nutrient medium that had been used for the isolation of several uncultured bacteria of the alpha subclass of proteobacteria, slow-growing Bradyrhizobium spp. were isolated and identified by sequencing of 16S rDNA. The individual isolates tested weakly positive (Ct = 31.2–36.0) with the USDA primers commonly used in qPCR assays for Las in foliar tissues. Direct DNA extracts from roots of HLB symptomatic trees that contained sequences of Bradyrhizobium sp. had Ct values ranging from 31.2 to 36.5; sequences of Las were not present in those samples. Potential cross-reaction between DNA of members of the Rhizobiales and sequences amplified by the Las primers were tested in silico with the Primer-BLAST tool in NCBI. Similar to Las, Bradyrhizobium generated predicted 16S rDNA amplicon sizes of 78–79 bp with the qPCR primers and of 1167-1172 bp with the conventional PCR primers. Bradyrhizobium sequences of 16S rDNA had 1–7 mismatches and only 1 mismatch at the 3′ end of qPCR and conventional PCR primers confirming potential cross-reactivity. As Bradyrhizobium is usually not found in foliage, the USDA qPCR primers can be safely used to check leaves for the presence of Las, but a threshold value of 31.0 is recommended for Las detection in roots. Other primers should be tested for potential cross-reaction with members of the Rhizobiales.  相似文献   

18.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

19.
Colletotrichum gloeosporioides is the causal agent of Camellia oleifera anthracnose, mainly infecting fruits and leaves. The fungus secretes degrading enzymes to destroy the cuticle of aerial plant parts and help infect the host successfully. To validate whether a cutinase gene (CglCUT1) was required for cutinase activity and pathogenicity of C. gloeosporioides, the CglCUT1 gene was cloned and analyzed. The characterization of CglCUT1 predicted protein suggests that the cloned DNA encoded a cutinase in C. gloeosporioides affecting C. oleifera. The CglCUT1 showed a high homology to those from C. gloeosporioides causing papaya anthracnose and C. capsici causing pepper anthracnose, as well as those of other ascomycetes. The whole CglCUT1 gene was knocked-out and the knockout mutant (?CglCUT39) was subsequently complemented using Agrobacterium tumefaciens mediated transformation. The knockout transformants exhibited significant decreases in cutinase activity and virulence compared with the wild-type strain. The complemented transformants of the disrupted transformant ?CglCUT39 showed a significant increase in cutinase activity and virulence compared with the disrupted transformant ?CglCUT39. This study suggests that the CglCUT1 gene has a positive effect on fungal virulence of the hemibiotrophic C. gloeosporioides on C. oleifera.  相似文献   

20.
Seed treatments with essential oils (from savory and thyme) and biocontrol agents (Pseudomonas spp. and Fusarium oxysporum) have been evaluated in vivo after dry hot air treatments against Fusarium oxysporum f. sp. basilici on basil seeds. The savory and thyme essential oils showed a significant pathogen control activity because of their innate antifungal activity and because of the seed application method, but the dry hot pre-treatment did not show any obvious effect on the performance of the essential oil treatments. The dry heat treatment improved the Pseudomonas seed dressing effect against F.oxysporum f. sp. basilici, and showed important reductions in plant infection and the disease index on the treated seed plants, without any negative effect on seed germination. However, the pathogen control provided by the heat treatments combined with the application of the biocontrol agents never reached the same performance as the chemical treatments considered as the reference. Thus, short dry heat treatments on basil seeds have been shown to be a valid but complementary seed disinfection method against Fusarium wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号