首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
好氧反硝化细菌YX-6特性及鉴定分析   总被引:7,自引:0,他引:7  
从对虾池塘筛选得到1株高效的好氧反硝化细菌,命名为YX-6。对该菌生长及反硝化性能间的关系进行研究;同时研究了不同温度、pH、盐度及碳源对该菌生长及反硝化性能的影响。结果表明,该菌反硝化作用主要发生在对数生长期,可将亚硝酸盐氮由10mg/L降至0;该菌最适生长及反硝化温度为30℃;pH值范围为7~9时最适于该菌生长及反硝化性能的发挥。该菌最适盐度范围为0~15;丁二酸钠、乙酸钠为该菌生长及反硝化的最适碳源。通过对YX-6菌株生理生化及16SrRNA分子鉴定,初步鉴定为凝结芽孢杆菌(Bacillus coagulans)。对该菌株亚硝酸还原酶基因进行序列分析,结果表明,该菌含有亚硝酸还原酶nirS基因。  相似文献   

2.
养殖废水排放严重制约海水养殖业健康发展,为了筛选出适用于养殖废水高效脱氮的菌株,利用BTB培养基从对虾育苗尾水沉淀池塘底泥和海水养殖废水处理池中分离纯化得到5株好氧反硝化菌株。经异养硝化能力试验研究发现5种菌株均具有一定的硝化能力,其中WM2菌株氨氮去除效果显著,去除率达到76.3%,经形态学鉴定、16S rDNA基因序列分析和系统发育树构建分析,鉴定其为革兰氏阴性菌,属于海生杆菌(Marinobacterium)属,海生杆菌属作为脱氮细菌研究在以往的研究中鲜有报道。将菌株WM2接种到实际的半滑舌鳎工厂化养殖废水中,处理48 h后的氨氮去除率达到89.38%、硝态氮去除率为88.77%、亚硝态氮去除率为99.66%,脱氮效果显著。因此本研究筛选出的菌株WM2作为新型异养硝化-好氧反硝化细菌对养殖废水脱氮具有良好的应用潜力。  相似文献   

3.
一种从环境中分离和富集硝化细菌的方法   总被引:2,自引:1,他引:1  
经反复分离筛选,从对虾养殖环境中分离得到5株亚硝化菌和3株硝化菌,均为革兰氏阴性细菌。设计了一套简易培养系统培养分离得到的硝化细菌,根据培养结果筛选出其中最具生长与硝化能力的优势亚硝化菌和硝化菌,同时检验应用该模式进行硝化细菌培养的效果。培养结果表明筛选的几株硝化细菌均有很强的生长和硝化能力,其中Y105和X101分别是亚硝化菌和硝化菌中最具优势的菌株。采用所设计的简易培养模式,在遮光、30℃、连续无菌充气的培养条件下,同时不补加营养物质和调整pH值,即可在短时间内获得较高密度(10~6~10~8 mL~(-1))的硝化细菌菌液,其中亚硝化菌富集培养时间为13~19 d,硝化菌为6~12 d。  相似文献   

4.
1株好氧反硝化芽孢杆菌的脱氮特性研究   总被引:8,自引:0,他引:8  
以具有较强反硝化能力的芽孢杆菌D5为出发菌株,研究了其牛长及好氧脱氮特性.研究结果表明,在高浓度的亚硝酸盐环境下其仍具有相当强的反硝化能力,且碳源为乙酸钠时脱氮能力最强.当碳源浓度0.2 mol/L、温度36℃、初始pH 7.0、溶氧5~7 mg/L时具有最佳的反硝化活性.和已报道的反硝化细菌相比,其具有更强的耐氧能力,同时也具有较高的反硝化速率.  相似文献   

5.
利用复合微生物降解养殖水体中亚硝酸盐的初步研究   总被引:4,自引:0,他引:4  
在养殖水体中对保存的芽孢杆菌、反硝化细菌、乳酸菌降解亚硝酸盐的能力进行比较,发现3种菌株对亚硝酸盐均能较好地降解,但降解速度不同,反硝化细菌>乳酸菌>芽孢杆菌;对3种菌株混合接种发现,具有较好净化水质效果的最佳接菌配比为芽孢杆菌∶反硝化细菌∶乳酸菌=1∶1∶2,在30℃、接种量为1%的条件下,以该配比接种亚硝酸盐,硝酸盐初始质量浓度分别为12.85、54.42mg/L的模拟养殖水体中,其亚硝酸盐、硝酸盐降解率在24h内均超99.99%,水体中的pH值显著降低,水体中的氨氮变化较小,可以实现对养殖水体的快速脱氮。  相似文献   

6.
一株反硝化细菌的筛选及其反硝化特性的研究   总被引:13,自引:0,他引:13  
从土壤中分离到一株高活性反硝化菌DNF409,经生理生化和16S rDNA序列分析,初步判断为芽孢杆菌属(Bacillussp.)。在生长的各个阶段,该菌株均具有较强的反硝化活性,最适反硝化碳源为乙醇。在天然养殖水体中,碳氮摩尔比达到8.0∶1、菌体浓度达到108cfu/L时,其反硝化活性即可充分发挥,硝态氮和亚硝态氮的降解率可分别达到94.79%和99.94%。试验表明该菌株在养殖水体的生物脱氮方面具有广阔的应用前景。  相似文献   

7.
四株异养硝化细菌的鉴定及硝化能力的初步研究   总被引:7,自引:0,他引:7  
从江苏通州、海安和吕四地区的养殖池塘浅层底泥中分离得到G、H、3-4和5-5四株具明显硝化活性的异养硝化细菌,通过形态学和生理生化研究,将上述菌株初步鉴定为芽孢杆菌(Bacillus sp.)。在外加有机碳源(丙酮酸钠0.01mol/L)的条件下对各菌株进行连续培养10 d后发现,随着各供试菌株生长量的增加,培养基中铵态氮和COD的含量均有明显下降。与对照组相比,铵态氮含量最大降幅达到了8%,COD最大降幅达到了32%。  相似文献   

8.
研究了以玉米芯同时作为反硝化碳源和生物膜载体的人工强化生物反应器对罗非鱼(Oreochromis spp.)循环养殖废水的脱氮效果,并对新型反应器脱氮微生物多样性进行了分析。结果表明,实验室条件下,人工强化挂膜方式可明显缩短装置的启动时间,新型脱氮装置具有良好的脱氮效果,氨氮可从(8.00±2.22)mg·L~(-1)降至3.50 mg·L~(-1),硝酸盐可从(31.50±1.57)mg·L~(-1)降至0.5 mg·L~(-1),较好地实现了高溶氧养殖废水的同步硝化反硝化作用,总氮去除率达85%以上。微生物群落结构分析表明,人工富集培养的硝化菌和反硝化菌均较为成功,随着装置运行时间的延长,玉米芯表面生物膜菌群也随之发生变化,参与脱氮的硝化细菌菌属主要由亚硝酸螺菌属(Nitrosospira)、亚硝酸单胞菌属(Nitrosomonas)、亚硝酸球菌属(Nitrosococcus)3个属组成;丰度最大的反硝化菌属为产碱菌属(Alcaligenes)、副球菌属(Paracoccus)、假单胞菌属(Pseudomonas)和脱氮硫杆菌(Thiobacillus denitrificans)。  相似文献   

9.
从尼罗罗非鱼(Oreochromis niloticus)肠道内容物中分离筛选出具有反硝化能力并拮抗无乳链球菌(Streptococcus agalactiae)的芽孢杆菌好氧菌株,并对其中拮抗性最强的1株芽孢杆菌进行形态学、生理生化特性、16S rRNA基因序列鉴定,进一步研究其最适生长条件、水解淀粉和蛋白的能力,并进行菌株药物敏感试验及安全性检测。经鉴定,筛选出的菌株(命名为NY 5)为蜡样芽孢杆菌(Bacillus cereus)。在反硝化性能检测培养基中接种1%的NY5菌液后,对50 mg/L的亚硝酸盐氮12 h去除效率达到100%;对本实验室保存的21株不同来源的无乳链球菌均有拮抗作用,平均抑菌圈直径为(26.67±3.00)mm。NY 5在温度为25~40℃、盐度为0~40、pH为5~9的环境中生长较好。同时NY 5还具有水解酪蛋白和淀粉的功能。NY 5菌株对多数抗生素敏感,对少数检测抗生素(青霉素G、麦迪霉素、头孢唑啉等)耐药。在水体中NY5菌液浓度为2.0×10~7 CFU/mL,以及在注射200μL2.0×10~6 CFU/mL浓度NY 5菌液的条件下,体重为(6.0±1.1)g的罗非鱼均未出现死亡及其他异常现象。综合上述结果,证明筛选出的NY 5菌株为蜡样芽孢杆菌。  相似文献   

10.
一株高效脱氮菌株的分离鉴定及应用潜力分析   总被引:1,自引:1,他引:0  
为了获得对虾养殖池塘中高效去除亚硝态氮和氨氮的菌株,采用富集培养分离的方法,从养殖水体中筛选得到1株去除亚硝态氮和氨氮的菌株,培养24 h后的去除率分别为96.17%和88.27%,编号为O-11。基于形态学、分子生物学及生理生化鉴定结果,明确了该菌株基本生物学特征以及可能的分类地位。分离菌株在20~30℃时有利于亚硝态氮的去除,而温度为20~35℃时对氨氮的去除效果较好;分离菌株在盐度小于30的环境中对亚硝态氮的去除能力受盐度变化的影响不大;在碱性环境中分离菌株对氨氮的去除能力较高。安全性检验可知,在菌浓度为10~5~10~8 cfu/mL的菌株O-11对凡纳滨对虾(Litopenaeus vannamei)是安全的,且在菌浓度为10~5 cfu/mL时能显著提高对虾的存活率,促进对虾生长。这说明,分离菌株O-11在水产养殖水体中有害氮脱除方面具有潜在的应用价值。  相似文献   

11.
张元 《水生态学杂志》2018,39(5):111-115
池塘养殖水体水质恶化问题日益突出,尽管已有各种商品化微生态制剂,但水质净化修复效果始终未得到有效提高。通过采用定向分离、筛选、扩繁来自原生境的土著有益菌的方法进行生物修复,从而提高养殖废水的净化修复效果;该方法具有针对性强、效果佳、安全性高、成本低以及持续活性时间长、无二次污染等优点。2016年9月,从山西省运城黄河滩涂水产养殖主产区养殖中后期的池塘水体中定向分离筛选得到1株土著反硝化细菌,命名为YJ-1,使用奈氏试剂和格利斯试剂对其反硝化能力进行检测。结果显示,奈氏试剂显示黄色,格利斯试剂显示绛红色,说明在细菌培养24h后发酵液中产生了少部分的铵离子和较多的亚硝酸盐,菌落具有反硝化功能。经16SrDNA序列扩增与测定,片段长度为1 441bp。无根系统发育树分析显示,YJ-1与产酸克雷伯氏杆菌(Klebsiella oxytoca)的同源性最高,YJ-1的分离打破了现有微生态制剂成分大多数为各种商品菌的局势;在水产微生态制剂制备过程中定向加入土著反硝化细菌,可有效降低养殖水体中氨氮与亚硝酸盐含量、减少鱼体发病率;反硝化细菌在水产养殖水质净化、城市污水处理中具有较大的应用前景,本研究为其他土著有益菌的分离、筛选、鉴定及应用提供了可借鉴的思路。  相似文献   

12.
多数硝化细菌的适宜温度是28℃左右,低于15℃硝化活性会基本丧失。为解决这一问题,通过构建低温海水硝化细菌富集培养装置,在11~14℃、pH值7.0~7.8、溶解氧4.0~4.5mg/L条件下,经过150d富集培养得到AOB硝化强度为21mg(NH_3-N)/(L·d),NOB硝化强度为93mg(NO_2~--N)/(L·d)的富集培养物。对富集培养物研究表明,当温度为15℃时,pH值为8.0、初始氨氮浓度为30mg/L条件下氨氧化活性较强;当温度为15℃时,pH值为7.0、初始亚硝氮浓度为80mg/L的条件下亚硝酸盐氧化活性较强。  相似文献   

13.
为探讨盐度和干露两种胁迫对大竹蛏呼吸代谢酶活力的影响,在实验室条件下分别研究盐度胁迫(15、20、25、30、35)和干露胁迫(6、12、24、48h)条件下,大竹蛏乳酸脱氢酶、碱性磷酸酶和琥珀酸脱氢酶3种酶活力的变化规律。结果显示,当盐度逐渐升高时,碱性磷酸酶的活性呈降低趋势,当盐度为20时,酶活性最低,为0.043U/g,当盐度为25时,酶活性最高,为0.053U/g。盐度对琥珀酸脱氢酶和乳酸脱氢酶呈现波纹型的影响,在盐度为25时,琥珀酸脱氢酶活性较高,为0.401U/mg;盐度为25时,乳酸脱氢酶活性较高,为0.604U/g,盐度为20时,乳酸脱氢酶活性显著降低,为0.287U/g,盐度为35时,乳酸脱氢酶活性无显著变化。当干露时间逐渐延长,从整体变化情况来看,琥珀酸脱氢酶、碱性磷酸酶和乳酸脱氢酶这3种酶的活性逐渐降低,当干露时间达到48h,3种酶活性均达到最低,分别为0.197U/mg、0.020U/g和0.187U/g。说明盐度和干露胁迫对大竹蛏呼吸代谢酶活力有显著影响(P<0.05)。研究结果可为大竹蛏的人工养殖和运输提供参考。  相似文献   

14.
为了考察3株异养硝化–好氧反硝化细菌对圆斑星鲽(Verasper variegates)养殖废水的净化效果,选择初始体重为(98±6)g的圆斑星鲽240尾,随机分为8组。分别接种花津滩芽孢杆菌(Bacillus hwajinpoensis)SLWX_2、嗜碱盐单胞菌(Halomonas alkaliphila)X_3和麦氏交替单胞菌(Alteromonas macleodii)SLNX2的不同组合。测定了不同组合中各项无机氮及有机物的变化情况。结果显示,在实验过程中,对照组氨氮、亚硝酸氮、硝酸氮、总氮和化学需氧量的浓度均呈持续上升趋势,分别从0.21 mg/L升至15.94mg/L,0.08 mg/L升至5.68 mg/L,1.10 mg/L升至7.05 mg/L,1.74 mg/L升至38.86 mg/L,1.19 mg/L升至22.87 mg/L。而加菌组的各指标浓度一直低于对照组,其中,SLWX_2+X_3+SLNX2组合对圆斑星鲽养殖废水净化效果最佳,氨氮、亚硝酸氮、硝酸氮、总氮、化学需氧量的浓度分别低于对照组68.55%、48.36%、58.38%、40.02%和27.47%,SLWX_2+X_3组合的净化效果次之。此外,第21天时,对照组出现大量死鱼现象,各实验组中仅有少量死鱼。研究表明,添加的异养硝化–好氧反硝化细菌可在不添加碳源的情况下实现脱氮功能,有效维护养殖水质,并且对圆斑星鲽无毒害及致病作用。  相似文献   

15.
实验从山东德州市一罗非鱼(Oreochromis niloticus)养殖场循环水养殖系统的脱氮池中分离到一株具有高效脱氮特性的菌株(编号DZYC02),分别以葡萄糖、蔗糖、可溶性淀粉、丁二酸钠、乙酸钠、柠檬酸钠为碳源,研究了碳源种类对菌株DZYC02脱氨氮效果的影响;同时以蔗糖为碳源、NH4Cl为氮源,研究了不同碳氮比、初始pH及盐度对该菌株脱氮效果的影响。结果显示:菌株DZYC02在以柠檬酸钠为碳源、C∶N≥15、pH 5~7、盐度0~15的条件下具有良好的脱氮效果,24 h内对浓度为20 mg/L的NH+4的去除率达100%,48 h内对浓度为20 mg/L的NO-2去除率高达100%;将该菌采用浸泡方式感染斑马鱼(Danio rerio)进行生物安全试验,结果显示菌株DZYC02对斑马鱼表现出较好的安全特性。分别用Biolog细菌鉴定方法和16S rDNA序列分析比对法对该菌进行鉴定,结果显示菌株DZYC02为一株肺炎克雷伯氏菌(Klebsiella pneumoniae)。  相似文献   

16.
分别采用活性污泥和惰性材料MX作为载体富集培养硝化细菌,研究了富集培养过程中生物相结构和性质变化。结果表明,在25~28℃,pH 7.5~8.5,DO 2~5mg/L,氨氮浓度100mg/L条件下,分别经过19d和15d的富集培养,可以得到硝化速率为4.18mg(NH3-N).[g(MLSS).h]-1和10.1mg(NH4+-N).[g(MLSS).h]-1的硝化细菌培养物,以惰性材料MX为载体富集培养的硝化细菌培养物硝化速率明显高于活性污泥为载体。在2种富集培养过程中,硝化细菌培养物的色泽和结构、MLSS、SV30、SVI、硝化强度和硝化速率等均呈现规律性变化且2种培养方法间表现出明显差异。  相似文献   

17.
低温硝化细菌培养装置的设计研究,利用低温硝化细菌的硝化和反硝化过程,使养殖水体中的有毒物质氨氮转化为氮气并从水体中释放出来,养殖水体得到充分净化可以循环使用,达到节约水资源和水处理费用的目的,具有结构简单、自动控制的功能,有利于封闭循环水产养殖业向健康方向发展,促进低温硝化细菌的发展进程。  相似文献   

18.
温室养鳖池底质硝化细菌的分离及其硝化性能的初步研究   总被引:1,自引:0,他引:1  
通过对温室养鳖池底质硝化细菌的富集,使其浓度达到10^7个/mL,用硅胶平板分离得到硝化细菌纯培养物。经鉴定主要有四种菌:硝化杆菌(Nitrobacter sp.)、硝化球菌(Nitrococcussp.);亚硝化单胞菌(Nitrosomonas sp.)和亚硝化球菌(Nitrosococcus sp.)。同时,对四种硝化细菌的硝化强度进行了测定,结果依次分别为78.7%、61.8%、74.3%和59.9%。而利用盐酸环丙沙星对硝化细菌硝化性能进行了干扰试验表明,0.4mg/L以上的盐酸环丙沙星,对亚硝化球菌和硝化球菌的硝化强度影响较大;同样浓度的抗生素对亚硝化单胞菌和硝化杆菌的影响相对较小。  相似文献   

19.
顾兆俊  朱浩  刘兴国  唐荣 《水产养殖》2014,35(10):33-36
以团头鲂、鲫鱼为试验对象,构建了一种基于人工生态系统的循环水养殖系统。通过底层陶粒吸附细菌、流水养鱼加快鱼类的代谢、湿地去除氨氮提高鱼的活性、生化箱培养硝化菌和反硝化菌来调控水质并起到控制水流速度的作用等技术手段来去除鱼类土腥味,同时研究不同盐度对其调控效果的影响。结果表明:本养殖系统对水体中的藻类和放线菌以及鱼体中的放线菌有明显的抑制作用。把(土池)池塘内养殖的鱼放入系统中暂养,一个月后土腥味显著降低,3个月后土腥味几乎消失;且随着水体盐度的升高,效果越加明显。  相似文献   

20.
为减少生物絮团培养过程中的碳源添加和溶氧消耗,节约成本,逐步将C/N比值从15降至7.9,进行低C/N驯化培养。在此基础上,对低碳条件下培育的生物絮团在无外加碳源和碳源充足时的氮去除、NO_2~--N积累、碱度消耗等情况进行了研究,综合评价其自养硝化(autotrophic nitrification,AN)和异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)效能。结果表明,低C/N驯化的生物絮团具有较高的AN活性和HN-AD活性,对NH_4~+-N去除率分别达97.10%和100.00%。氨氧化过程为AN的限速步骤,比氨氧化速率为13.17 mg·(g VSS·d)~(-1),小于比亚硝酸盐氧化速率[29.20 mg·(g VSS·d)~(-1)],HN-AD的比氨氧化速率达40.28 mg·(g VSS·d)~(-1),约为AN过程的3倍。由于同步硝化反硝化的存在,HN-AD的碱度消耗(3.34 g碱度·g~(-1)NH_4~+-N,以Ca CO_3计)小于AN(4.30 g碱度·g~(-1)NH_4~+-N),且HN-AD的TIN去除率达53.69%。HN-AD的NO_2~--N积累较多,最多达2.62 mg·L~(-1),积累率为46.37%,AN的NO_2~--N最高仅0.47 mg·L~(-1),积累率为3.31%。研究结果可为生物絮团定向驯化及其在水产养殖水处理中的应用提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号