首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决大田玉米/豌豆间作模式下豌豆人工收获效率低、成本高的问题,设计了一款针对种植模式下豌豆收获机的脱粒装置,该装置主要由脱粒滚筒、凹板、顶盖、机架组成。通过ANSYS Workbench对脱粒滚筒进行了静力分析和模态分析仿真,得出脱粒滚筒在最大工作载荷时的应力为148.44MPa,最大变形为1.9638mm,最大应变为0.0010924mm,滚筒的安全系数为1.6842,设计满足该装置作业要求。在模态分析中使用分块兰索斯(Block Lanczos)法进行前6阶模态参数提取,固有频率范围87.021~177.08Hz,脱粒滚筒最大转速868r/min,远小于产生共振的转速5221.26r/min,设计满足作业要求。  相似文献   

2.
针对荞麦机械化收获破碎率高、含杂率大、容易发生“绕辫子”而堵塞脱粒滚筒等问题,研制了一种伸缩杆齿式脱粒装置,利用纹杆滚筒和栅格凹板对作物的揉搓、梳刷作用实现脱粒,而与纹杆滚筒相配合的伸缩式杆齿,能够很好地将作物进行翻腾、向后推送,避免了秸秆缠绕,提高了脱粒效果。将该脱粒装置安装于荞麦脱粒性能试验台,选取滚筒转速、脱粒间隙和喂入量作为试验因素建立了3因素正交试验,通过极差分析得到最佳工作参数组合为滚筒转速350 r/min、脱粒间隙10 mm、喂入量1.0 kg/s,该条件下,籽粒破碎率为3.42%、籽粒损失率为0.14%,满足荞麦机械化收获指标,为伸缩杆齿式脱粒装置的应用和荞麦联合收获机的研发提供理论依据。   相似文献   

3.
针对荞麦机械化收获破碎率高、含杂率大、容易发生“绕辫子”而堵塞脱粒滚筒等问题,研制一种伸缩杆齿式脱粒装置,利用纹杆滚筒和栅格凹板对作物的揉搓、梳刷作用实现脱粒,而与纹杆滚筒相配合的伸缩式杆齿,能够很好地将作物进行翻腾、向后推送,避免了秸秆缠绕,提高了脱粒效果。将该脱粒装置安装于荞麦脱粒性能试验台,选取滚筒转速、脱粒间隙和喂入量作为试验因素建立了三因素正交试验,通过极差分析得到最佳工作参数组合为滚筒转速350r/min,脱粒间隙10mm,喂入量1.0kg/s,该条件下,籽粒破碎率为3.42%,籽粒损失率为0.14%,满足荞麦机械化收获指标,为伸缩杆齿式脱粒装置的应用和荞麦联合收获机的研发提供理论依据。  相似文献   

4.
4LZ-1.0Q型稻麦联合收获机脱粒清选部件试验与优化   总被引:9,自引:0,他引:9  
对4LZ -1.0Q型稻麦联合收获机脱粒清选部件进行了正交试验,采用模糊综合评价法对小麦田间试验结果进行分析,得出脱粒清选环节中钉齿脱粒滚筒、栅条凹板筛、上盖板、振动筛、离心风机部件的优化组合参数.试验结果表明,影响脱粒性能的因素主次顺序为:滚筒齿顶线速度、脱离间隙、上盖板导向次数、凹板筛筛分包角、凹板筛筛孔大小和脱粒间隙,优选参数组合为滚筒齿顶线速度25 m/s、脱离间隙55 mm、上盖板导向4次、凹板筛筛分包角204°、凹板筛筛孔尺寸36 mm×15 mm、脱粒间隙15 mm;影响清选性能的因素主次顺序为:振动筛曲柄转速、筛面结构形式、离心风机转速、振动筛振幅,优选参数组合为振动筛曲柄转速404 r/min、筛面16 mm方孔编织筛、离心风机转速1787 r/min、振动筛振幅30 mm.可控制含杂率小于3%、破碎率小于1%、脱粒清选籽粒损失率小于1.5%.  相似文献   

5.
为提高我国大白菜种子机械化收获水平,降低脱粒损失,促进大白菜产业更好地发展,设计了一种适用于大白菜种子机械化收获的横轴流脱粒装置。选取籽粒破碎率、未脱净率为试验指标,滚筒转速、脱粒间隙及筛条间隙为试验因素进行了台架试验,建立了各试验因素与试验指标之间的数学模型,分析了各因素对指标的影响,并对装置的结构及工作参数进行了优化。结果表明:各因素对籽粒破碎率的影响大小顺序为滚筒转速>筛条间隙>脱粒间隙,各因素对未脱净率的影响大小顺序为滚筒转速>脱粒间隙>筛条间隙。验证试验结果显示:当滚筒转速为724r/min、脱粒间隙为21.7mm、筛条间隙为11.8mm时为最优参数组合,此时籽粒破碎率为0.085%、未脱净率为0.337%,达到国家及行业标准,能够较好地满足大白菜种子机械化脱粒需求。  相似文献   

6.
针对谷子机械收获过程中谷码率高、破损率高、未脱净损失率高的问题,设计了一种纵轴流双柔性碾搓式谷子脱粒装置。该装置采用纵轴流脱粒滚筒,脱粒滚筒上通过安装柔性橡胶辊降低了谷子籽粒破损率,从而实现谷子柔性低损伤脱粒,橡胶圈外表面的波浪形凸起对谷子具有很好的碾搓脱粒性能。柔性凹板筛由空心圆柱旋转筛分单元两两相互交错组成,每组两排空心圆柱旋转筛分单元相互交错配合,形成适合谷子籽粒分离的U形孔,凹板筛支撑装置具有微动性,与柔性凹板筛配合形成柔性微动凹板筛,有利于谷子籽粒分离和降低谷码率。选取喂入量、滚筒转速和脱粒间隙为试验因素,以谷码率、破损率、未脱净损失率和功耗为指标,进行了三元二次回归正交旋转组合试验,确定了喂入量、滚筒转速和脱粒间隙的最佳参数组合。结果表明:当喂入量1.4kg/s、滚筒转速735r/min和凹板间隙9mm时,谷子籽粒破损率为0.35%,谷码率为1.78%,未脱净损失率为0.64%,功耗为10.6kW。  相似文献   

7.
针对荞麦脱粒损失率和破碎率高的问题,采用伸缩杆齿与纹杆混合式荞麦脱粒装置和弹性可调节凹板组合的方式,设计了一种荞麦脱粒装置,分析了关键部件结构与参数设计。运用Matlab/Simulink软件建立脱粒装置关键部件动力学分析,结果表明,在机构无负载工作时,脱粒装置运行平稳,滚筒阻力最大消耗功率为0.53 kW,维持滚筒匀速旋转扭矩所消耗功率为3.11 kW,总体上动力消耗较小。利用Design-expert软件,以滚筒转速、脱粒间隙为试验因素,损失率与破碎率为评价指标进行2因素5水平二次回归正交旋转组合试验,并对试验结果进行参数优化,试验表明,在荞麦籽粒含水率为17.5%~23.2%,秸秆含水率为70.0%~74.9%条件下,最佳试验组合为喂入量每组2 kg、滚筒转速457.161 r/min、脱粒间隙为12.6815 mm,其损失率为0.337%、破碎率为0.236%,试验结果符合设计要求。   相似文献   

8.
斜置切纵流联合收获机脱粒分离装置结构参数优化   总被引:5,自引:0,他引:5  
为满足我国现阶段高产水稻的收获要求,对自行研制的履带式斜置切纵流联合收获机进行了结构改进,构建了载荷测试系统,并在田间开展了三因素三水平的正交试验,分析了切纵流滚筒转速、切流滚筒凹板筛结构形式、斜置纵轴流螺旋喂入头与导流罩径向间隙等因素对脱粒分离性能的影响,使用极差分析法对斜置切纵流联合收获机脱粒分离装置的结构参数进行了优化。优化结果表明:切流滚筒转速和纵轴流滚筒转速分别为862、806 r/min,切流凹板筛过渡段为导向、分离孔式,螺旋喂入头与导流罩径向间隙为50 mm时,整机的脱粒分离性能较优。脱粒分离总损失率为0.62%,脱粒分离总功耗为40.42 k W。  相似文献   

9.
喂入辊轴流滚筒组合式大豆种子脱粒机设计与试验   总被引:3,自引:0,他引:3  
针对大豆种子机械脱粒损伤率高与脱净率低等问题,提出了对辊喂入预脱、轴流滚筒抓脱的组合式脱粒方案,进行了滚筒脱粒元件、喂入装置和传动系统等装置和部件的结构设计并设计了脱粒样机。滚筒脱粒元件由螺旋排列的钉齿、弓齿、板齿组成,与凹板筛构成组合式脱粒装置;喂入装置主要由双喂入辊组成;气力清选装置主要由振动筛和风机组成。以"辽豆10"为试验对象,通过正交试验分析,以下喂入辊转速、脱粒滚筒转速和凹板间隙为试验因素,脱净率和损伤率为试验指标,进行了优化试验研究。结果表明:下喂入辊转速为222 r/min、滚筒转速为500 r/min、脱粒间隙40 mm时,大豆脱粒综合指标最优,脱净率为98.4%,大豆损伤率为1.4%。  相似文献   

10.
翅碱蓬联合收获机关键部件设计与试验   总被引:1,自引:1,他引:0  
翅碱蓬含水率高,籽粒微小,机械化收获时脱粒和清选比较困难.通过试验分析,确定了脱粒部件的滚筒齿形,进口端采用钉齿,中段采用钉齿-弧形齿组合式,排草段采用钉齿-排草板组合式;滚筒长度不小于1 100 mm;滚筒转速为800 r/min;轴流风机转速为400~450 r/min.通过清选装置的台架试验,得到机构尺寸为1 200 mm×1 000 mm(长×宽)的球式振动筛.  相似文献   

11.
针对目前青稞联合收获过程中秸秆含芒率高、芒杆长度高,以及现有脱粒滚筒无法对芒杆倒刺进行有效处理的现状,设计一种青稞联合收获机脱粒碎芒装置,整机主要部件包括机架、脱粒滚筒、凹板、风机、筛箱、滚筒盖及传动系统。通过选择不同脱粒元件,计算和确定其结构参数与排列形式,以增加滚筒对芒杆内表面倒刺的揉搓能力,同时在凹板处设置碎芒板条,在保证籽粒脱净率前提下,有效提高了脱粒滚筒的碎芒率。运用ABAQUS软件对整机机架振动特性进行有限元仿真,对比固有频率与外部激励频率变化趋势,保证脱粒装置作业时无共振现象发生。得出在极限工况条件下,滚筒最大变形量为1.02 mm,满足设计要求。田间性能试验表明:籽粒破碎率为0.11%、含杂率为5.27%、脱净率为87.49%、秸秆含芒率为5.86%、碎芒率为93.15%,各项指标均满足相应标准要求,秸秆中所含芒杆内表面倒刺去除效果明显,有效提高青稞秸秆饲草的食用适口性。本研究为青稞机械化联合收获、脱粒及芒杆处理提供应用实例和技术参考。  相似文献   

12.
大白菜种子市场规模发展迅速,其大面积、产业化种植使得机械化收获需求日益增长。针对人工收获效率低、常规脱粒方式下种子破碎率高问题,设计了一种由弹性短纹杆-板齿、柔性圆头钉齿等脱粒元件与圆管凹板组合的大白菜种子脱粒装置。利用ANSYS Workbench对脱粒滚筒进行有限元模态分析,验证脱粒滚筒结构的合理性。选取喂入量、滚筒转速及脱粒间隙为试验因素,以种子损失率和破碎率为试验指标开展了响应面优化及田间对比试验,建立各试验因素与试验指标之间的数学模型,分析各因素对指标的影响并对装置的结构及工作参数进行了优化。试验结果表明,当滚筒转速为726r/min、脱粒间隙为22.3mm、喂入量为1.73kg/s时,种子损失率为0.68%,破碎率为0.39%。试验结果满足设计要求,能够实现对收获期大白菜种子的低破碎率机械化脱粒作业。  相似文献   

13.
为解决沙棘枝果速冻后结块,阻塞脱果机的问题,设计一款新的沙棘预破碎装置。根据生产需要设计出该装置的整体结构,主要对传动系统、破碎刀片的数量和排列方式进行设计。利用ANSYS对刀辊进行有限元分析,结果表明,刀辊的最大变形量为0.004 9 mm;其最大应力为21.191 MPa远小于刀辊的最低屈服极限235 MPa,说明刀辊的强度和刚度都满足要求。根据刀辊前6阶模态分析情况,刀辊的工作转速360 r/min远小于安全转速47 812.5 r/min,不会发生共振现象。试验结果表明,当沙棘预破碎装置的刀辊转速为360 r/min时,工作性能稳定,整机作业时间降低至4.1 min,脱果率可达87.1%,破损率降低至8.8%。  相似文献   

14.
全喂入联合收割机的高损失率、高含杂率和高破碎率一直是我国全喂入联合收割机发展的瓶颈.为此,从研发一种全新的异速双轴流脱粒装置着手,将前脱粒滚筒的转速设计为786r/min,后脱粒滚筒的转速设计为1001r/min;作物先喂入转速较低的前脱粒滚筒,使易脱粒的谷粒脱粒下来;然后将尚未脱净的茎秆投入后脱粒滚筒,使剩余的较不易脱粒的谷粒在较高转速和更强力的打击下脱离出来;再辅以脱粒室端盖及凹板筛、振动筛的优化设计,为联合收割机提供一种脱净率高而破壳率低的高效谷物脱粒装置.  相似文献   

15.
阐述玉米联合收获机纵轴流脱粒分离装置的结构设计和工作原理,详细介绍滚筒、凹板、脱粒间隙调节机构的设计思路。田间测试表结果表明,在滚筒工作长度2 100 mm、倾角12°、脱粒间隙40 mm、滚筒转速300 r/min的条件下,该脱粒装置的性能优越。  相似文献   

16.
为了解决纵轴流脱粒装置在作物喂入量较大时易出现分离不彻底、破碎率高、损失率高及脱粒功耗大等问题,设计了一种联合收获机360°脱粒分离装置。该装置主要由脱粒滚筒、上部凹板筛、下部凹板筛、回流板及凹板筛间隙调节装置等构成。通过高速摄影试验,分析了装置不同区域的脱粒、分离过程。通过作业效果对比试验,证明360°脱粒分离装置能有效降低籽粒破碎率和损失率。为了解360°分离装置不同区域的分离性能,进行了不同区域分离性能对比试验。为了解上半部分凹板筛分离性能与作业参数的关系,以滚筒转速、导流板角度及凹板筛间隙为影响因素,以顶部凹板筛分离脱出物重量为试验指标,进行了单因素试验。结果表明:在0°~180°范围内分离出的脱出物质量明显高于181°~360°范围;在0°~180°范围内, 121°~180°范围分离出的脱出物最多;在181°~360°分离范围内,301°~360°范围分离出的脱出物最多。上半部分凹板筛分离性能随着滚筒转速的升高而升高,随着导流板角度的增大而增强,随着凹板筛间隙的增加而降低。研究结果可为改进纵轴流脱粒分离装置结构和参数优化提供参考和依据。  相似文献   

17.
为解决传统半喂入联合收割机收获超级杂交稻时,存在脱不净、夹带损失与籽粒破碎损失之间矛盾,设计了半喂入联合收割机双速回转脱粒分离装置,该装置主要由同轴双速脱粒滚筒和回转式凹板筛构成,阐述双速回转脱分装置结构及工作原理。以低/高速滚筒转速、回转凹板筛线速度、夹持链速度为试验因素,籽粒损失率、破碎率和含杂率为性能指标,进行三因素二次回归正交旋转组合设计试验,运用Design-Expert 6.0.10软件对试验结果进行分析,建立该脱分装置性能指标数学模型,优化确定最佳工作参数组合,并进行双速回转脱分装置与传统单速脱分装置对比试验。结果表明,双速回转脱分装置低/高速滚筒转速为505/680 r/min、回转凹板筛线速度为1.00 m/s和夹持链速度为1.26 m/s时,籽粒损失率、破碎率和含杂率分别为1.94%、0.21%和0.56%,性能指标优于传统单速脱分装置。本研究可为半喂入联合收割机新型脱分装置的设计提供理论依据。  相似文献   

18.
单切双横流脱粒分离装置参数试验与优化   总被引:4,自引:0,他引:4  
李耀明  周伟  徐立章  孙韬  唐忠 《农业机械学报》2015,46(5):62-67,92
为解决全喂入式联合收获机收获秆青叶茂难脱高产水稻时脱粒分离损失大且容易出现堵塞的问题,设计了单切双横流脱粒分离装置,在单切双横流脱粒分离装置试验台上,通过对比试验分别对凹板筛栅条轴向间距、顶盖导向板个数和滚筒轴间距进行了优选,得到优选结构参数为:第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流凹板筛栅条轴向间距分别为10 mm、16 mm和16 mm,第Ⅱ横轴流和第Ⅲ横轴流顶盖导向板的个数都为4个,第Ⅰ切流和第Ⅱ横轴流以及第Ⅱ横轴流和第Ⅲ横轴流滚筒轴间距分别为645 mm和667.5 mm;在得到的优选结构参数下,以喂入量、脱粒间隙和滚筒转速为试验因素进行正交试验,并运用模糊综合评价法和极差分析得出试验范围内切双横流水稻脱粒分离装置的优选工作参数为:喂入量为5 kg/s,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒间隙分别为40 mm、35 mm和40 mm,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流滚筒转速分别为550 r/min、600 r/min和750 r/min。在此参数下,得到单切双横流脱粒分离装置的性能指标为:未脱净率0.05%,夹带损失率0.36%,脱粒总损失率0.41%,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒滚筒功耗分别为3.33 k W、21.26 k W和12.58 k W,脱粒滚筒总功耗37.17 k W,脱出物杂余质量分数14.37%。  相似文献   

19.
针对剑麻人工收割劳动强度大、效率低、成本高等问题,结合剑麻叶片物理特性和收割工艺特点,设计一种圆盘切割式剑麻采摘装置。首先,简述整机结构与工作原理;然后,对装置关键部件的结构进行设计,通过对刀具在切割过程中的受力与运动分析,确定刀具的回转半径和转速等结构与运行参数;最后,运用ANSYS对圆盘刀具进行静力学和模态分析,进而仿真优化刀盘结构,以刀具回转半径和安装角度为试验因素,刀具底部的最大应力和刀具顶部的最大形变量为评价指标进行两因素三水平正交仿真试验。仿真试验结果表明:当刀具安装角度为28°,最大回转半径为105 mm时,刀具的最大变形量为0.09 mm,最大应力为9.38 MPa,远小于刀具材料的最小屈服强度345 MPa;安全系数最小值为15,远大于1,最小循环次数为1010,进入了无限寿命区;根据刀具前6阶模态分析知,刀具的工作转速800 r/min,远小于极限转速。以上研究表明,刀具的刚度、强度和安全系数、疲劳寿命均满足要求,且不会发生共振现象。研究为剑麻收割机的设计及刀具避开共振点频率,减小因振动产生的变形,提供理论和技术参考。  相似文献   

20.
联合收获机脱粒滚筒凹板间隙调节装置设计与试验   总被引:4,自引:0,他引:4  
为解决联合收获机在田间作业时因喂入量波动而导致作业性能下降及脱粒滚筒堵塞等问题,用凹板筛后侧油缸油压力表征脱粒滚筒负荷,设计了由凹板间隙调节系统和凹板筛后侧油压力采集系统组成的脱粒滚筒负荷监测和凹板间隙调节装置。田间试验中,采用油压传感器测量凹板筛后侧油压力,并通过STM32单片机对测得的油压信号进行采集并保存,分别分析了喂入量和凹板间隙对油压力以及脱粒分离性能的影响。结果表明,凹板筛后侧油缸油压力和脱粒分离损失率随喂入量增大而增大,喂入量从3.4 kg/s增大到6.0 kg/s时,凹板筛后侧油缸油压力从732 N增加到1 114 N,脱粒分离总损失率由0.54%增加到1.08%。在额定喂入量为6.0 kg/s条件下,凹板筛后侧左右两个油缸的油压波动范围为450~660 N,且两侧油缸压力一致。另外,凹板筛后侧油缸油压力随凹板间隙增大而减小,脱粒分离总损失率随着凹板间隙的增大而增大,凹板间隙从35 mm增大到45 mm时,凹板筛后侧油缸油压力从1 114 N降到758 N,脱粒分离总损失率由1.08%增加到1.31%。在喂入量为6.0 kg/s、凹板间隙为35 mm时,脱粒分离总损失率仅为1.08%,整机性能最佳,此时凹板筛后侧油缸油压力的变化范围为900~1 320 N。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号