首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The velocity changes of ultrasonic shear waves propagating transversely to the applied stress direction in wood were investigated. The wave oscillation directions were parallel and normal to the uniaxially applied stress direction. The velocities of the shear waves for both oscillations decreased as the compressive load increased, and increased as the tensile load increased. The velocity of the normally oscillated shear wave showed smaller change against the stress applied than that of the parallel oscillated wave. The initial birefringence due to the orthotropy of wood was observed without any stress. Velocity changes in the two principally oscillated shear waves were proportional to the stress within the stress range tested. The acoustoelastic birefringence effect was obtained from the velocity difference between the two shear waves. The relative difference between the two velocities (called acoustic anisotropy) was given as a function of the applied stress. The acoustoelastic birefringence constants were obtained from the relationships between the acoustic anisotropy and the applied stress.  相似文献   

2.
Transversal variations of some ultrasound wave parameters (phase velocity, group velocity, attenuation coefficient and acoustic radiation) were measured from the pith to the bark of poplar tension wood discs in different orthotropic directions. Over 80 cubic specimens of 2 × 2 × 10 cm3 (radial, tangential and longitudinal, respectively) were prepared and tested acoustically. Samples containing tension woods were separated from normal ones using anatomical experiments. Results showed acoustical behaviour of normal and tension wood improved in longitudinal direction while the distance between pith and bark increased; also, wave parameter variations were less important in radial and tangential directions. In addition, phase velocity and acoustic radiation – which significantly varied – were the best parameters for quality assessment of poplar wood compared with group velocity and attenuation coefficients. Since samples near the bark were acoustically better than counterparts near the pith, they could be used in products requiring more strength, like lumber. Finally, acoustic radiation and phase velocity were correlated more strongly with density than group velocity and attenuation.  相似文献   

3.
Ultrasonic shear waves were propagated through the breadth direction of a wood beam which was subjected to a bending load such that it was in a plane-stress state. The oscillation direction of the shear waves with respect to the wood beam axis was varied by rotating an ultrasonic sensor, and the relationship between the shear wave velocity and the oscillation direction was examined. The results indicate that when the oscillation direction of the shear wave corresponds to the tangential direction of the wood beam, the shear wave velocity decreases sharply and the relationship between shear wave velocity and rotation angle tends to become discontinuous. When the oscillation of the shear waves occurs in the anisotropic direction of the wood beam instead of in the direction of principal stress, the shear wave velocity exhibits a peak value. In addition, the polarization direction was found to correspond to the direction of anisotropy of the wood beam according to the theory of acoustoelastic birefringence with respect to plane stress. This indicates that when the acoustoelastic birefringence method is applied to stress measurement of wood, it is appropriate to align the oscillation direction of the shear wave with the principal axial direction of anisotropy in order to carry out ultrasonic measurement.  相似文献   

4.
While wood has numerous attributes that make it an excellent material for many uses, its properties can also vary widely according to wood species and even within the same species. Wood used in structural applications is categorized into classes. For many wood products, these classes or grades are based upon visual assessments that account for grain characteristics along with natural defects such as knots or splits. These approaches are simple, but also limit the potential for identifying products based upon actual material properties. One alternative is to use acoustic tests to estimate modulus of elasticity and then correlate these values to actual material properties. The potential for using acoustic tests to estimate wood properties was assessed with a prototype acoustic device (Metriguard Model 242) on western juniper (Juniperus occidentalis) posts that were then tested using a destructive bending test. These tests could allow the identification of decayed areas within a post if they were directly in the tested area, but predicted modulus of elasticity was poorly correlated with actual modulus of rupture (r2?=?0.23). The correlation was improved by only considering those samples where the acoustic test was made through the same area where the test load was applied, but the relationship was still weak (r2?=?0.33). Acoustic testing did appear to be able to identify unacceptably weak samples with minimal rejection of acceptable samples, suggesting that acoustic testing might be a useful sorting tool to improve the reliability of timbers.  相似文献   

5.
To evaluate the dielectric anisotropy caused by wood structure at a millimeter wave frequency of 100 GHz, the dielectric parameters for flat-sawn specimens of nine wood species at 0 and 11 % moisture content (MC) were measured using a free space method devised for reducing the multiple reflections under an electric field of millimeter waves parallel to longitudinal and tangential directions of wood, and those in radial direction were estimated using a conventional approximation theory. The dielectric parameters in the tangential and radial directions were almost identical and constantly smaller than those in the longitudinal direction. All the dielectric parameters increased with wood density and were larger at 11 than 0 % MC. The dielectric parameters in the longitudinal and transverse directions and the dielectric anisotropy between them were well fitted to the regression lines based on a dielectric mixture model composed of pores and dielectric isotropic wood substance, and a parallel capacitor and Lichtenecker’s exponential formulas were employed to represent the dielectric parameters of the mixture in the longitudinal and transverse directions, respectively. It was concluded that the dielectric anisotropy at 100 GHz is caused by the pore alignment and that the dielectric parameters are almost unaffected by anatomical structures, such as the rays. It was also confirmed that the free space method was effective for the measurement of the dielectric parameters for the flat-sawn specimens.  相似文献   

6.
In order to improve the accuracy and reliability of identifying wood defects and to realize the maximum wood utilization of trees, we employed an experimental method to test the stress wave propagation velocity in standing Fraxinus mandshurica trees selected from the Harbin Forest Experimental Station in winter. Thirty standing trees in good conditions were taken as test specimens and stress wave propagation velocities were measured using a FAKOPP Microsecond Timer in trees in both fall and winter. The test data were processed with the aid of Excel and SPSS software. The results show that 1) the velocities in longitudinal and radial stress wave propagation in frozen F. mandshurica trees were much higher than those in the non-frozen trees; 2) there was a highly positive correlation between longitudinal stress wave propagation velocity in frozen and non-frozen states, with a correlation coefficient of 0.82, as well as a positive correlation between radial stress wave propagation velocity in frozen and non-frozen states with a correlation coefficient of 0.87; 3) in the frozen state, the longitudinal stress wave propagation velocity was significantly affected by the moisture content (MC) of standing tree, while it was not obvious in the non-frozen state and 4) the radial stress wave propagation velocity was not significantly affected by MC in either frozen or non-frozen state.  相似文献   

7.
Stress conditions produced in wood were analyzed by means of the acoustoelastic birefringence method. Bending load was applied against a wood beam specimen. Under loading, ultrasonic shear waves were propagated through the breadth direction of the wood beam specimen. The velocities of shear waves polarized in the longitudinal or tangential direction of the wood beam specimen were measured with the sing-around method. Bending stresses were determined by dividing the difference between the acoustic anisotropy and the texture anisotropy by the acoustoelastic birefringence coefficient. Shear stresses were also determined. These stress distributions of the beam specimen were in good agreement with those obtained by the strain gauge method and mechanical calculation.  相似文献   

8.
Coupling media are necessary to ensure that transducers bond to wood specimens to minimize coupling losses and improve the accuracy of ultrasonic measurements. There are several types of coupling media available, and the optimal choice is not known. In this work, we analyzed the results of ultrasonic wave attenuation for 0.1-MHz longitudinal and transverse transducers with six different materials as coupling media in nine species of Brazilian wood with densities in the range 700–1170 kg/m3. Tests were performed using constant pressure on the transducer and with wave propagation in the longitudinal direction. For transverse transducers, the polarization was in the radial and tangential directions. The results were analyzed statistically and showed that, for attenuation in both longitudinal and transverse waves, the material used for coupling had significant effects, whereas the wood species had no effect. For longitudinal waves, the statistical evaluation showed that the coupling material performance was strongly dependent on the species of wood, but it was not possible to observe any tendency of behavior associated with specific anatomical properties.  相似文献   

9.
Ultrasonic nondestructive evaluation (NDE) methods have been successfully applied for grading lumber and veneer at the in-plant level. To expand this application in wood composite production, further research is needed to elucidate the effect of differences of component elements within wood composite panels on the behavior of ultrasonic waves traveling through them. The objective of this study was to investigate the effects of the internal bonding of particleboard specimens containing component chips of different geometry on ultrasonic velocity. Commercial chips screened at four sizes were used to produce particleboard specimens with different internal bonding by controlling their out-of-press thickness at (a) a constant thickness for boards made of each chip size, and (b) four different thicknesses for boards made of the same chip size. Twenty-four boards were made with phenol-formaldehyde (PF) resin at 8% solid resin content in our laboratory. After the velocities of the waves traveling through the thickness of the boards were recorded, the internal bond strengths were tested. Results showed the density, internal bond state, and constituted chip geometry were the main factors influencing the velocity. NDE using ultrasonic waves is an available method to evaluate the internal bonding of particleboard with a density less than about 0.75g/cm3. With densities over that value, no significant changes of the velocity were found.Part of this paper was presented at the 48th annual meeting of the Japan Wood Research Society, Kochi, April 1998  相似文献   

10.
The changes in the velocity of ultrasonic waves propagating in wood parallel to the direction of applied stress are discussed. The ultrasonic mode was longitudinal waves traveling along the direction of applied stress with the compressive load applied parallel to the transverse direction of the wood. The ultrasonic velocities were measured by the sing-around method. The experimental results indicated the existence of an acoustoelastic phenomenon in the transverse direction of the wood. The percent change in the ultrasonic velocity was given as a function of the applied stress. The change in the velocity depended on the species and structural direction of the wood. That is, in the radial direction of hardwood, the ultrasonic velocity increased with increases in compressive stress at the initial stress level of less than 2MPa; it then gradually decreased with increases in stress. A change in velocity from an increase to a decrease was considered a unique phenomenon for wood. In contrast, in the radial direction of softwood and the tangential direction of hardwood, the ultrasonic velocity decreased with increases in stress from the beginning of loading. This phenomenon is also generally observed in metallic materials. The relations between velocity and stress at the initial stress level and between velocity and strain in the range of large deformation are represented by essentially straight lines. The acoustoelastic constants of wood were obtained from these relations at the initial stress level. The absolute values of the constants in the transverse direction of wood were larger than those for metals and were larger than those for the longitudinal direction of wood reported in our previous paper.This research was presented at the 1st Meeting of the Research Society of the Acoustoelastic Measurements in the Japan Society of Non-Destructive Inspection at Osaka, October 1996 and at the 47th Annual Meeting of Japan Wood Research Society at Kochi, April 1997  相似文献   

11.
This study was intended to detect nondestructively some defects such as knots and grain deviations in wood using modal analysis. The shapes of flexural vibration waves at the first mode generated by the tapping of wooden beams were determined using the transfer function. The wave shapes obtained were compared with the theoretical wave shape for a uniform material; and the possibility of detecting defects in wood was examined. The results are summarized as follows: (1) The shapes of flexural vibration waves at the first mode of wooden beams free of defects coincided almost completely with the theoretical wave shape. (2) The shapes of flexural vibration waves of wooden beams containing defects such as knots clearly differed from the theoretical wave shape, especially near the defect. (3) Based on these results, it should be possible to detect the presence of defects and to determine their location in wood.Part of this report was presented at the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1999. This article is translated from the Japanese edition published inMokuzai Gakkaishi Vol. 47, No. 4, 1988  相似文献   

12.
应力波木材无损检测信号采集系统   总被引:5,自引:2,他引:3  
应力波木材无损检测技术可在不破坏木材使用性能的前提下,快速的检测出木材的尺寸、规格和基本物理性质等,基于此优点,应力波无损检测技术近几年越来越受到青睐。应力波在木材中传播时,如遇到裂缝、孔洞、裂纹等界面不连续处,就会发生反射、折射、散射和模式转换,对缺陷有很高的敏感性。基于应力波的这种敏感性,本文对应力波在木材中传输时的信号进行采集,通过对采集信号进行频谱分析、小波变换等处理,可进一步得到应力波在木材中的传播速度等参数,从而为鉴别木材的缺陷提供更多的信息。  相似文献   

13.
Abstract

The objective of this study was to examine the potential of acoustic measurement as a rapid and nondestructive method to predict the dimensional stability of young-growth Sitka spruce and western hemlock. Ultrasonic velocity, peak energy, specific gravity, and radial and tangential shrinkages were measured on twenty-four 25-×102-×y 25-mm specimens obtained from a 58-year-old stand in Southeast Alaska. We found that specific gravity and peak energy of ultrasonic signals were not good predictors of transverse shrinkage, as indicated by poor correlations. Ultrasonic velocity, on the other hand, was found to be a significant predictor of transverse shrinkage and therefore has good potential to be used as a field method to evaluate dimensional stability. The single-parameter prediction model explained 86% of transverse shrinkages in western hemlock and 71% of transverse shrinkages in Sitka spruce. Further study is needed to test the capability and feasibility of using acoustic velocity to predict both longitudinal and transverse shrinkages of wood in standing trees.  相似文献   

14.
This study presents three-point bending test results of Norway spruce clear wood specimens loaded on the radial-longitudinal plane in two different load cases. The tested samples were graded as resonance wood for instrument making and were characterised by narrow annual rings and relatively low density. The modulus of elasticity (MOE) and the corresponding modulus of rupture (MOR) are illustrated separately for the samples with straight grain and the group showing the specific growth pattern of indented rings (‘hazel growth’). With the longitudinal wood anatomical direction parallel to span width, the fibre deviation caused by the indents reduces MOE and MOR values, whereas a ‘reinforcing’ effect of the indents could be observed for the load case with span width parallel to the radial direction. Both aspects lead to a reduction in anisotropy for hazel-growth Norway spruce (anisotropy MOE: indented rings 11.6, straight grain 14.7, anisotropy MOR: indented rings 6.9, straight grain 8.9), which partly explains the exceptional position of this growth pattern for the construction of high-class musical instruments with outstanding mechanical and acoustical performance.  相似文献   

15.
Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.  相似文献   

16.
Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for online quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood quality and intrinsic wood properties. Although the concept of using acoustic velocity as an effective measure of stiffness applies to both standing trees and felled logs, the method typically used to measure acoustic velocity in trees is different from that used in logs. Consequently, there is a significant difference in measured velocity values between trees and logs. Other factors affecting tree–log velocity relationships include tree diameter, stand age, operating temperature, and wood moisture content. This paper presents the fundamentals of acoustic wave propagation in trees and logs and discusses two different mechanisms of acoustic velocity measurement, time-of-flight for standing trees and resonance for logs. Experimental data from previous studies are reviewed and analyzed to examine the strength of the tree–log velocity relationships and discuss the factors that influence tree velocity deviation.  相似文献   

17.
Plantations of tropical species are becoming an increasingly important source of wood.However, it is important that research trials focus not only on tree growth performance, but also on wood quality.The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity(MOE) and wood density.Forty-eight 7-year Maesopsis eminii Engl.and thirty-five 9-year specimens(7 each of 5 Shorea spp.)were selected from two trials.The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness.Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated.The growth performance of M.eminii in terms of tree volume was significantly different in three different categories of growth(i.e.fast, medium, slow).Of the five Shorea spp.studied, Shorea leprosula Miq.had the highest growth rate, as expected since it is known to be a fastgrowing Shorea species.Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE.Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance.The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.  相似文献   

18.
To clarify the effect of pore conformation on the dielectric anisotropy of wood, the relative permittivity along the longitudinal and tangential axes of flat-sawn oven-dry specimens of 12 different wood species was measured using terahertz time-domain transmission spectroscopy and compared with the values calculated using the eigenvalue problem for two-dimensional photonic crystals. The measured dielectric anisotropy, which is the ratio of the relative permittivity along longitudinal axis to that along the tangential axis, was well explained by the calculated value. It was concluded that the ratio of tangential to radial widths of wood pores affects the relative permittivity along the tangential axis, and that the dielectric anisotropy decreased with an increase in the ratio. This discussion can also be applied to the relative permittivity in frequencies below 0.15 THz. These findings show promise as a new method for evaluating the porous structure of wood.  相似文献   

19.
The attenuation coefficients of 100-GHz millimeter waves polarized linearly were measured for cross-cut, quarter-sawn, and flat-sawn boards of hinoki (Chamaecyparis obtusa) that were 0.2–2.0 cm thick. This was done to examine the applicability of free-wave propagation theory for applying electromagnetic waves to wood. It was found that the transmittance of a millimeter wave through the specimen boards was lower when the fiber direction of a board was parallel to the direction of the electric field of the incident wave than when the fiber direction was perpendicular to the electric field, and there was little difference in the transmittance between the tangential and radial directions for the former case. These findings can be quantitatively explained by using propagation theory and the dielectric properties of wood.  相似文献   

20.
四种方法测木质材料动弹性模量的对比研究   总被引:1,自引:0,他引:1  
为寻找比较准确的估计木质材料静弹性模量的方法,以色木方材为例,采用纵向应力波、超声波、纵向共振和弯曲共振等4种方法检测41个无瑕疵试件的动弹性模量,采用静态载荷法测量其静弹性模量,并分析二者的相关性,采用配对t检验比较不同方法的差异。研究结果表明:四种方法测得的木质材料动弹性模量均高于其静弹性模量,但静、动弹性模量之间均呈显著的线性相关性,R2都大于0.7,因而四种方法都可以用来估计其静弹性模量。其中,弯曲共振法得到的样本试件动弹性模量与静弹性模量的差值均值最小,且相关性最高,因而运用弯曲共振法对木质材料静弹性模量进行估计最为准确,检测值也最接近静弹性模量值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号