首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 247 毫秒
1.
在25℃室温和37℃恒温台条件下,利用玻璃化冷冻溶液EFS30、EFS40、EDFS30或EDFS40,对小鼠4-细胞胚胎进行玻璃化冷冻保存.以解冻后培养72h的囊胚发育率为其体外发育能力的考核指标,同时对解冻后培养1~3h的胚胎进行移植以判定其体内发育潜力。开放式拉长塑料细管(OPS)二步法冷冻保存,即胚胎首先移入预处理液(10%EG或10%EG+10%DMSO)中平衡30s,再移入玻璃化溶液中洗涤后吸入OPS管中,分别经35、30或25s后直接投入液氮中冷冻保存。一步法冷冻保存则无需预处理液处理。结果表明,小鼠胚胎4-细胞一步法和二步法冷冻后囊胚最高发育率分别为87.7%和88.6%,与对照组(93.0%)差异不显著(P〉0.05)。利用最佳冷冻组获得的143枚胚胎移植于12只假妊娠50~60h的受体母鼠,结果有4只妊娠产仔17只,妊娠产仔率为42.5%(17/40),与对照组59.4%(19/32)差并不显著(P〉0.05)。  相似文献   

2.
澳洲波尔山羊胚胎3种冷冻方法对其胚胎移植效果的影响   总被引:2,自引:0,他引:2  
在25℃室温下,采用细管法(一步法、二步法)和OPS法,以不同浓度的EFS、EDFS为玻璃化冷冻液,对澳洲波尔山羊致密桑椹胚和囊胚进行玻璃化冷冻保存。同时利用1.5mol/LEG为抗冻保护剂对胚胎进行常规法冷冻保存。分别将上述3种方法冷冻解冻后的胚胎移植于同期发情后6~7d的云南黑山羊受体。结果表明,细管法胚胎玻璃化冷冻保存效果均以EFS40组为佳,解冻后胚胎移植产羔率分别为40.54%(15/37;一步法)和51.35%(19/37;二步法)。与新鲜胚胎移植产羔率(52.50%,21/40)和常规法冷冻保存的胚胎移植产羔率(45.16%,14/31)相比无显著性差异(P>0.05)。另外,用EDFS30玻璃化溶液,OPS法冷冻解冻后的胚胎移植产羔率高达51.43%(18/35),为整个玻璃化冷冻试验的最佳值。玻璃化冷冻方法简便、迅速,无论是细管法还是OPS法均获得了比较理想的胚胎移植效果。  相似文献   

3.
以6M甘油+6.5%PVP(V1)和8MEG+7%PVP(V2)为玻璃化溶液,采用细管法和OPS一步法对小鼠囊胚进行冷冻。结果表明:胚胎在玻璃化溶液中平衡20S显著高于平衡60S后的存活率(P<0.05);蔗糖四步法解冻后的发育率与蔗糖三步法冷冻解冻后的发育率差异不显著(P>0.0 5);用OPS三步法冷冻后(V2)的小鼠囊胚的体外发育率显著高于细管法和OPS一步法冷冻后的发育率(P<0.01);在OPS三步法冷冻过程中,平衡时间对胚胎冷冻后的发育率有一定的影响。  相似文献   

4.
以6M甘油+6.5%PVP(V1)和8MEG+7%PVP(V2)为玻璃化溶液,采用细管法和OPS一步法对小鼠囊胚进行冷冻.结果表明:胚胎在玻璃化溶液中平衡20S显著高于平衡60S后的存活率(P<0.05);蔗糖四步法解冻后的发育率与蔗糖三步法冷冻解冻后的发育率差异不显著(P>0.05);用OPS三步法冷冻后(V2)的小鼠囊胚的体外发育率显著高于细管法和OPS一步法冷冻后的发育率(P<0.01);在OPS三步法冷冻过程中,平衡时间对胚胎冷冻后的发育率有一定的影响.  相似文献   

5.
用0.25 mL细管和OPS(open pu lled straw)管,对小鼠囊胚进行玻璃化冷冻,以比较2种方法的冷冻效果。结果表明,冷冻-解冻胚胎体外培养24 h后,2组的发育率分别为63.3%(31/49)和71.4%(55/77);OPS法在冻胚发育率上稍优于细管法,但无统计学差异(P>0.05);2组冷冻胚胎的培养发育率均显著低于鲜胚培养组94.3%的发育率(P<0.05)。采用OPS法冷冻小鼠8-细胞胚,其冻后培养发育率为55.6%,似乎要低于囊胚冷冻后的培养发育率,但差异不显著(P>0.05)。  相似文献   

6.
本研究探讨了不同抗冻保护剂、不同冷冻方法、玻璃化液(EFS40)中添加FCS和BSA,以及冷冻前细胞松驰素B处理对山羊胚胎冷冻保存效果的影响。结果表明,山羊胚胎常规冷冻时以1.5 mol/L EG为抗冻保护剂的保护效果最好,解冻后胚胎发育率为70.59%,孵化率为58.82%;玻璃化冷冻细管法和OPS法以EFS40为保护液的冷冻效果较好,其解冻后胚胎的发育率分别为67.57%和52.94%;EFS40中添加BSA的冷冻保护效果显著地高于不添加其他成分的EFS40;山羊胚胎冷冻前用细胞松驰素B处理,能提高冷冻保存的效果。  相似文献   

7.
采用OPS管和GMP管对GV期的牛的卵母细胞进行玻璃化冷冻.在不同的前处理液中平衡5 min,然后在冷冻液(EFS30,EFS40,EDFS30或EDFS40)中平衡30 s,进行OPS法和GMP法玻璃化冷冻保存.结果显示,OPS法用EFS40液和EDFS40液冷冻后形态正常卵率为69.6%和76.1%,2组差异显著(P<0.05),成熟率最高达19.2%和33.3%,2组差异显著(P<0.05);GMP法用EFS40液和EDFS40液冷冻后形态正常卵率最高达75.6%和80.8%,2组差异显著(P<0.05),成熟率最高达15.6%和34.9%,2组差异显著(P<0.05).而采用EDFS40液,OPS法和GMP法对GV期卵母细胞体外发育的影响差异均不显著,但GMP法的冷冻效率较高.表明采用EDFS40液GMP法对GV期卵母细胞的冷冻效率优于OPS法.  相似文献   

8.
为探究开放式拉长细管(OPS)玻璃化冷冻对四倍体胚胎发育的影响,本实验利用2-细胞胚胎电融合法制备四倍体胚胎,再对四倍体胚胎进行OPS玻璃化冷冻,分别观察记录二倍体胚胎、四倍体胚胎以及冷冻解冻后四倍体胚胎的发育情况。结果表明:2-细胞胚胎电融合效率为96.1%;二倍体胚胎组与电融合后四倍体胚胎组的囊胚率和孵化囊胚率差异不显著;冷冻解冻后四倍体胚胎的囊胚率(100%)与四倍体新鲜组(93.3%)差异不显著,其孵化囊胚率(72.3%)较新鲜组(64.9%)显著增高(P<0.05);四倍体冷冻解冻组的囊胚细胞数(31.96)与新鲜组(32.54)无显著差异;冷冻解冻后的四倍体早期囊胚进行体外培养时其发育速度比对照组更快。可见,冷冻对小鼠四倍体胚胎的囊胚率和囊胚细胞数均无显著影响,但孵化囊胚率显著提高,且OPS玻璃化冷冻后使四倍体胚胎的发育速度更快。  相似文献   

9.
影响山羊胚胎冷冻效果因素的研究   总被引:4,自引:0,他引:4  
分别用浓度为1.5 mol/L的乙二醇(EG),1.5 mol/L 1,2-丙二醇(PROH)和1.5 mol/L甘油为冷冻保护液对山羊胚胎进行常规冷冻保存,结果三者对山羊胚胎的冷冻保护效果无显著差异,其中以1.5 mol/L EG的冷冻保护效果为佳。以EFS40为玻璃化液对山羊胚胎进行细管法和OPS法玻璃化冷冻,其结果与常规冷冻间差异不显著,表明常规冷冻法、玻璃化细管法和OPS法均可用于山羊胚胎的冷冻保存。采用25℃和37℃水浴对常规冷冻和玻璃化冷冻后的山羊胚胎进行解冻,从解冻后的发育效果看,二者间无显著差异,但37℃水浴解冻后的胚胎发育效果略好于25℃。还比较了玻璃化液EFS40中添加FCS和BSA后与不添加其他成分的EFS40对胚胎冷冻保护效果的影响,结果表明添加BSA的EFS40的冷冻保护效果显著地高于不添加其他成分的EFS40,但与添加FCS的EFS40间不存在统计学上的差异。  相似文献   

10.
①用EFS30、EFS40、EDFS30、EDFS40四种玻璃化冷冻液对MⅡ期水牛卵母细胞进行毒性试验,结果表明:试验组卵母细胞形态正常率与对照组均无显著性差异(P>0.05);对卵母细胞孤雌激活后EDFS30、EDFS40组的卵裂率与对照组(75.28%)及EFS30、EFS40组差异显著(P<0.05);利用4种冷冻保护剂采用OPS法冷冻保存MⅡ期水牛卵母细胞,其中以EDFS40作为冷冻液时,卵母细胞冷冻解冻后孤雌激活卵裂率最高,达31.60%;以EDFS40作为冷冻液,比较了GMP法和OPS法的冷冻效果,结果表明GMP法冷冻效果好于OPS法。②采用不同预处理时间和平衡时间使用细管法常规冷冻G V期卵母细胞,结果表明预处理5 min、平衡15min组的形态正常率和极体排出率相对较高,分别为72.73%、27.27%。  相似文献   

11.
The aim of this study was to investigate the effects of different vitrification solutions [EFS30 or EFS40 contains 30% (v/v) ethylene glycol (EG), 40% (v/v) EG; EDFS30 or EDFS40 contains 15% (v/v) EG and 15% (v/v) dimethyl sulfoxide (DMSO), 20% (v/v) EG and 20% (v/v) DMSO], equilibrium time during vitrification (0.5-2.5 min) and vitrification protocols [one-step straw, two-step straw and open-pulled straw (OPS)] on in vivo development of vitrified Boer goat morulae and blastocysts after embryo transfer. In the one-step straw method, the lambing rates of vitrified embryos in EFS30 (37.5%), EFS40 (40.5%) or EDFS30 (38.2%) group were similar to that of fresh embryos (57.5%) and conventional freezing method (46.7%) when the equilibrium time was 2 min. In the two-step straw method, the highest lambing rate was obtained when embryos were pretreated with 10% EG for 5 min and then exposed to EFS40 for 2 min (51.4%), showing similar lambing rates compared with fresh embryos (56.1%) or the embryos cryopreserved by conventional freezing method (45.2%). In the OPS method, the lambing rate in EFS40, EDFS30 or EDFS40 groups were similar to that (57.1%) of fresh embryos, or to that (46.0%) of embryos cryopreserved by conventional freezing method. The highest lambing rate (51.4%) of the group of OPS was obtained when the embryos were vitrified with EDFS30. In conclusion, either the two-step straw method in which embryos were pretreated in 10% EG for 5 min and then exposed to EFS40 for 2 min, or the OPS method in which embryos were pretreated in 10% EG + 10% DMSO for 30 s and then exposed to EDFS30 for 25 s was a simple and efficient method for the vitrification of Boer goat morulae and blastocysts.  相似文献   

12.
The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3-100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8-89.5%) and hatched blastocyst rates (61.1-69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3-30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.  相似文献   

13.
用不同冷冻载体(玻璃管、塑料管和0.25 mL细管)及不同冷冻方法(程序化冷冻和玻璃化冷冻)对小鼠3.5 d~4 d桑椹胚和囊胚进行冷冻保存,并与不做任何冷冻保存处理直接培养进行对比。结果表明,使用玻璃管、塑料管和0.25 mL细管作为胚胎的承载材料进行玻璃化冷冻,效果差异不显著;采用程序化冷冻与OPS玻璃化冷冻法,对小鼠胚胎进行冷冻保存可以取得较好的结果。从而得出,用不同材质的冷冻载体进行玻璃化冷冻,可以获得与程序化冷冻相同的良好效果。  相似文献   

14.
In the present study, mouse blastocysts were employed to investigate the feasibility and efficiency of stepwise in-straw dilution and direct transfer using the open pulled straw (OPS) method. In experiment I, the effects of various vitrification solutions (VS) on embryo survival were examined. After thawing, the expanded blastocyst rates (97.59 and 95.05%) and hatching rates (80.48 and 78.95%) achieved in the EDFS30 [15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll, and sucrose] and EFS40 [40% EG, Ficoll, and sucrose] groups were no different from those (96.15% and 83.33%) of the control group. However, the rates in the EFS30 [30% EG, Ficoll, and sucrose] (87.80 and 55.43%) and EDFS40 [20% EG, 20% DMSO, Ficoll, and sucrose] (95.69 and 70.97%) groups were significantly lower than those (96.15 and 83.33%) of the control group (P<0.05). In the experiment II, the effects of the volume of VS in the OPS on the survival of embryos after in-straw thawing were investigated. When the length of the VS in the column was less than 1 cm, the in vitro viability of embryos thawed by stepwise in-straw dilution was no different among the experimental and control groups. The embryos could be successfully thawed by immersing the OPS in 0.5 M sucrose for 3 min and then 0.25 M sucrose for 2 min. In experiment III, the effect of immersion time of the OPS in diluent (PBS) on the viability of vitrified embryos was investigated. After in-straw thawing, OPSs were immersed immediately in 1 ml PBS for 0 to 30 min. When the immersion time of the OPSs in PBS was less than 12 min, in vitro development of the in-straw thawed embryos was no different from that of the controls. In experiment IV, in-straw thawed blastocysts were directly transferred to pseudopregnant mice to examine their in vivo developmental viability. The pregnancy (91.67%) and birth rates (42.42%) of embryos in-straw thawed and directly transferred were no different from those of the unvitrified controls (90.90 and 40%) and embryos thawed by the conventional method (84.61 and 46.94%). These results demonstrate that mouse embryos vitrified with OPS could be successfully thawed by stepwise in-straw dilution and transferred directly to a recipient and that this method might be a model for field manipulation of vitrified embryos in farm animals.  相似文献   

15.
小鼠桑椹胚简易玻璃化冷冻技术再探讨   总被引:12,自引:0,他引:12  
本试验继小鼠扩张囊胚玻璃化冷冻保存成功后,在室温(25℃)下利用不同浓度的EFS玻璃化溶液,对小鼠的桑椹胚简易玻璃化冷冻技术进行再探讨。结果是胚胎在10%EG溶液中预先处理5分钟,再移入事先配置好含有EFS30的0.25ml塑料细管中1分钟平衡后直接投入液氮中冷冻,解冻后获得的发育率最高(94%)。冻胚移植后妊娠率和产仔率分别为56%(9/16)及42%(49/116)。与对照组相比差异不显著(P>0.05)  相似文献   

16.
My research awarded includes contributions to cryopreservation and sexing of bovine embryos produced in vitro and in vivo, as follows; (1) In vivo-derived morulae and blastocysts were cryopreserved in the presence of 10% glycerol, and the embryos were transferred into recipients after two-step dilution of glycerol in straw, with a practically acceptable pregnancy rate. (2) The survival rate of 16-cell stage embryos frozen in the medium with ethylene glycol was higher than that with DMSO or 1,2-propanediol. Addition of linoleic acid-albumin to culture medium enhanced the survival rate of post-thaw bovine 16-cell stage in vitro-produced (IVP) embryos. (3) Polarization of cytoplasmic lipid droplets by centrifugation of 2-cell stage embryos was found effective to increase freezing tolerance in 16-cell stage embryos developed from the centrifuged embryos, because blastomeres of 16-cell stage embryos were mostly lipid-free. (4) The usefulness of gel-loading tip (GL-Tip) as a container for ultra-rapid vitrification was demonstrated in IVP embryos from 2-cell to blastocyst stages, with a higher in vitro survival than the conventional two-step freezing. (5) PCR analysis for sexing of in vivo-derived Day-7 embryos indicated that male embryos developed faster and graded higher than female embryos. But such correlation between genetic sex and embryonic development was not found in IVP embryos obtained from individual cows. (6) Addition of 0.1-1.0% deproteinized hemodialysate product from calf blood to culture medium increased the producing efficiency of demi-embryos with good quality. Female embryos rather than male embryos required a longer time to repair after bisection. (7) In vivo-derived bovine embryos after biopsy for sexing by PCR analysis and subsequent vitrification using GL-Tips are available to practical use in the field. (8) Introduction of primer extension preamplification-PCR and purification of DNA product before standard sexing PCR of biopsy samples from Day 3-4 in vitro-derived embryos allowed accurate sex determination, and Day-7 blastocysts developed from Day 3-4 embryos were cryopreserved by GL-Tip vitrification without a loss of their viability. Thus the field application of bovine embryo transfer is in part supported by improvements of technologies in embryo cryopreservation and sex pre-determination.  相似文献   

17.
Solid surface vitrification (SSV) was compared with in-straw vitrification for cryopreservation of biopsied mouse embryos. Eight-cell stage embryos were zona drilled and one blastomere was removed. Developed morulae or blastocysts were vitrified in microdrop (35% EG + 5% PVP + 0.4 M trehalose) or in straw (7.0 M EG + 0.5 M sucrose). Following recovery, embryos were cultivated in vitro or transferred into recipients. Cryopreservation had an effect not only on the survival of biopsied embryos but also on their subsequent development in vitro. Cryosurvival of biopsied morulae vitrified in straw was significantly inferior to SSV. The post-warm development of biopsied and non-biopsied morulae was delayed on Day 3.5 and 4.5 in both vitrification groups. A delay in development was observed on Day 5.5 among vitrified non-biopsied blastocysts. The percentage of pups born from biopsied morulae or blastocysts following cryopreservation did not differ from that of the control. No significant differences could be detected between methods within and between embryonic stages in terms of birth rate. The birth rate of biopsied embryos vitrified in straw was significantly lower compared to the non-biopsied embryos. The novel cryopreservation protocol of SSV proved to be effective for cryopreservation of morula- and blastocyst-stage biopsied embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号