首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competitive interactions with non‐native species can have negative impacts on the conservation of native species, resulting in chronic stress and reduced survival. Here, juvenile Atlantic salmon (Salmo salar) from two allopatric populations (Sebago and LaHave) that are being used for reintroduction into Lake Ontario were placed into semi‐natural stream tanks with four non‐native salmonid competitors that are established in Ontario streams: brown trout (S. trutta), rainbow trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Brown trout and rainbow trout reduced the survival and fitness‐related traits of Atlantic salmon, whereas Chinook salmon and coho salmon had no impact on these traits. These data support theories on ecological niche overlap and link differences in observed aggression levels with competitive outcomes. Measurements of circulating hormones indicated that the Atlantic salmon were not chronically stressed nor had a change in social status at the 10‐month time point in the semi‐natural stream tanks. Additionally, the Sebago population was better able to coexist with the non‐native salmonids than the LaHave population. Certain populations of Atlantic salmon may thus be more suitable for some environments of the juvenile stream phase for the reintroduction into Lake Ontario.  相似文献   

2.
Although non‐native species can sometimes threaten the value of ecosystem services, their presence can contribute to the benefits derived from the environment. In the Great Lakes, non‐native brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) support substantial recreational fisheries. With current efforts underway to restore once‐native Atlantic salmon (Salmo salar) to Lake Ontario, there is some concern that Atlantic salmon will impede non‐native contributions to the recreational fishery because Atlantic salmon exhibit niche overlap with brown trout and rainbow trout, particularly during the juvenile life stage. We therefore examined competition and growth of juvenile Atlantic salmon, brown trout and rainbow trout in semi‐natural streams. We found that brown trout were the most dominant and had the greatest growth rate regardless of what other species were present. Rainbow trout were more dominant than Atlantic salmon and consumed the most food of the three species. However, in the presence of brown trout, rainbow trout fed less frequently and exhibited negative growth as compared to when the rainbow trout were present with only Atlantic salmon. These data suggest that, outside of density‐dependent effects, Atlantic salmon will not impact stream production of brown trout and rainbow trout.  相似文献   

3.
Intraspecific hybridisation may result in hybrid offspring exhibiting superior (heterosis) or inferior (outbreeding depression) fitness relative to their parental populations. As both have been demonstrated in salmonids, consequences of interbreeding between divergent populations are relevant to their conservation. Atlantic salmon Salmo salar L. were extirpated from Lake Ontario by the late 19th Century due to anthropogenic causes. Multiple allopatric populations of hatchery‐reared Atlantic salmon are being stocked in an effort to re‐establish a self‐sustaining population. This study evaluated whether interbreeding between Sebago Lake (Maine) and LaHave River (Nova Scotia) individuals will result in heterosis or outbreeding depression in juveniles. This was accomplished through full‐factorial 2 × 2 mating crosses between the strains and comparing multiple fitness‐related traits between the cross types. Hybrid juveniles displayed no signs of outbreeding depression nor heterosis. Further studies on comparative fitness of backcross and F2 hybrids are recommended to assess potential consequences for this and similar restoration efforts.  相似文献   

4.
Abstract – Atlantic salmon (Salmo salar) was once native to Lake Ontario, however, its numbers rapidly declined following colonisation by Europeans and the species was extirpated by 1896. Government agencies surrounding Lake Ontario are currently undertaking a variety of studies to assess the feasibility of reintroducing Atlantic salmon. We released hatchery‐reared adult Atlantic salmon into a Lake Ontario tributary to examine spawning interactions between this species and fall‐spawning exotic salmonids found in the same stream. Chinook salmon, coho salmon and brown trout were observed interacting with spawning Atlantic salmon in nearly one‐quarter of our observation bouts, with chinook salmon interacting most frequently. Whereas a previous investigation found that chinook salmon caused elevated agonistic behaviour and general activity by spawning Atlantic salmon, the present study found that interspecific courtship was the most common form of exotic interaction with spawning Atlantic salmon. In particular, we observed precocial male Chinook salmon courting female Atlantic salmon and defending the female against approach by male Atlantic salmon. We discuss the potential implications of these interactions on the Lake Ontario Atlantic salmon reintroduction programme.  相似文献   

5.
Effects of exotic salmonids on juvenile Atlantic salmon behaviour   总被引:1,自引:0,他引:1  
Abstract –  We examined the effects of two salmonid species, chinook salmon ( Oncorhynchus tschwaytscha ) and brown trout ( Salmo trutta ), both exotic species to Lake Ontario, on behaviour and foraging success of juvenile Atlantic salmon ( S. salar ), a native species to Lake Ontario, in an artificial stream. We found that both exotic species have effects on Atlantic salmon behaviour, but that neither had an effect on foraging success. These results may explain why the Atlantic salmon re-introduction programme in Lake Ontario has had little success, as more than 3 million exotic salmonids are released in Lake Ontario streams annually.  相似文献   

6.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

7.
Brook trout are the one of the only Salvelinus species native to eastern North America and range from Canada to Georgia. Very little is known, however, about the ecology of the southern form of this species. We quantified microhabitat use of southern brook trout in Ball Creek NC, a third‐order stream, during six seasonal samples (summer 2010, autumn 2010, spring 2011, summer 2011, autumn 2011 and spring 2012). In general, trout preferentially occupied deeper microhabitats with lower mean velocities and higher amounts of erosional substrata than were randomly available. Older trout (1+ and 2+) occupied deeper microhabitats with lower mean velocities than yearling trout. These microhabitats typically represent ‘plunge pools’. Southern brook trout also occupied focal point velocities that were statistically indistinguishable from optimal velocities calculated for rainbow trout in the same system and thus may chose microhabitats that maximise net energy gain. Southern brook trout are found in isolated populations, and management strategies should focus on the preservation of plunge pool habitat for conservation of this subspecies.  相似文献   

8.
The mechanisms by which nonnative species establish populations can be classified into two broad categories: they usurp the niches of native species through interspecific competition, or they avoid this intense interspecific competition by making use of minimal niche overlap with the native species. In this study, we considered how a nonnative salmonid species, the rainbow trout Oncorhynchus mykiss, established a population in the presence of the native salmonid species, the masu salmon O. masou, in Hokkaido, Japan. Circumstantial field evidence shows that the masu salmon exceeds the rainbow trout in abundance and suggests that these species use different types of cover habitat (rainbow trout abundance increases with increasing abundance of large woody debris aggregates, whereas masu salmon abundance increases with increasing abundance of undercut banks). These results imply that the rainbow trout established a population due to minimal niche overlap with the masu salmon, and not by competitive exclusion of the native species.  相似文献   

9.
Growth rates of Atlantic salmon, pink salmon, Arctic char, sea trout and rainbow trout were compared under Norwegian farming conditions. During the juvenile, freshwater period, growth was fastest in pink salmon, followed by rainbow trout and Arctic char. Freshwater growth of sea trout and, especially, Atlantic salmon, was slow. After transfer of smolts or fingerling to sea water, Arctic char failed to survive the autumn. Sea water growth of sea trout was slow, but the three species, rainbow trout, Atlantic salmon and pink salmon, all grew rapidly through all seasons. When in sea water, rainbow trout and pink salmon were regularly attacked by vibriosis, while Atlantic salmon were rarely attacked, and sea trout never. It is concluded that, for commercial farming in Norway, rainbow trout are of value for production of fish of any size up to 3–4 kg, and pink salmon for production of small fish of 0.5–1.5 kg. Atlantic salmon is the only species suitable for production of a very large salmonid, i.e., more than 4–5 kg.  相似文献   

10.
Chinook salmon impede Atlantic salmon conservation in Lake Ontario   总被引:1,自引:0,他引:1  
Abstract – Non-native species can have substantial impacts on successful restoration of native species. Here, we examined effects of chinook salmon ( Oncorhychus tshawytscha ), an exotic species introduced to Lake Ontario to enhance recreational angling, on reintroduced Atlantic salmon ( Salmo salar ) in a Lake Ontario tributary stream. Field enclosure studies revealed that adult Atlantic salmon activity rate was elevated, nest establishment delayed and mortality rates higher in the presence of chinook salmon. These results suggest that chinook salmon in Lake Ontario streams during fall spawning could impede successful re-establishment of Atlantic salmon in the lake.  相似文献   

11.
12.
In 2017, a PCR‐based survey for Piscine orthoreovirus‐3 (PRV‐3) was conducted in wild anadromous and non‐anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR‐positive, with Ct‐values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR‐negative. Neither non‐anadromous trout (brown trout) nor landlocked salmon were PRV‐3 positive. Altogether, these findings suggest that in Norway PRV‐3 is more prevalent in the marine environment. In contrast, PRV‐3 is present in areas with intensive inland farming in continental Europe. PRV‐3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.  相似文献   

13.
The non‐native rainbow trout (Oncorhynchus mykiss) has been introduced worldwide for angling purposes and has established self‐reproducing populations in many parts of the world. Introduced rainbow trout often have negative effects on the native salmonid species, ranging from decrease abundance, growth and survival, to their local extinction. Assessing the effects of introduced rainbow trout on the native species is thus crucial to better set up conservation programmes. In this study, we investigated the effects of non‐native rainbow trout on the diet of native marble trout (Salmo marmoratus) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream in two sectors only a few hundred metres apart: a downstream sector (treatment) in which marble trout live in sympatry (MTs) with rainbow trout (RTs) and an upstream sector (control) in which marble trout live in allopatry (MTa). Specifically, we investigated using stable isotopes the effects of rainbow trout on dietary niche, diet composition, body condition, and lipid content of marble trout. We found dietary niche expansion and niche shift in marble trout living in sympatry with rainbow trout. Compared to MTa, MTs had higher piscivory rate and showed higher body condition and prereproduction lipid content. Our results indicate that the presence of rainbow trout did not have negative effects on marble trout diet and condition and that changes in dietary niche of marble trout are likely to be an adaptive response to the presence of rainbow trout, and further research is needed to better understand.  相似文献   

14.
Abstract— Due to species introductions, brook charr (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) occur together in many North American streams and typically exhibit a pattern of distribution in which brook charr numerically dominate headwaters and rainbow trout dominate downstream reaches. It has been suggested that 1) the two species compete or 2) the two species do not compete because they are differentially adapted to environmental conditions found in upstream and downstream zones. We assessed whether there were differences in growth and macrohabitat (pool, run and riffle) selection of brook charr and rainbow trout in upper, middle and lower stream zones of a small Pennsylvania stream. Brook charr and rainbow trout placed in replicate paired enclosures set in upstream and downstream reaches showed no significant differences in growth and survival rates upstream, but brook charr had significantly greater growth rates than rainbow trout downstream. Enclosed fish and free-ranging fish both had negative growth rates during the summer. Enclosed fish lost significantly less weight than free-ranging fish. Instantaneous growth rates of free-ranging adult brook charr and rainbow trout from May to August were negative for both species in all stream zones. Underwater observations of adult brook charr and rainbow trout showed both species occurred significantly more often in pool macrohabitats than expected on the basis of macrohabitat availability, except for rainbow trout in the upstream zone. The proportion of pool macrohabitat was not significantly different among stream zones. Brook charr do not appear to be better adapted to upstream environments in Powdermill Run based on growth, survival and macrohabitat selection during summer. Negative biotic interactions acting along with differential environmental adaptations may explain the pattern of distribution of brook charr and rainbow trout in streams, but long-term transplant experiments with additional life stages will be necessary to examine this hypothesis.  相似文献   

15.
Northcote TG. Controls for trout and char migratory/resident behaviour mainly in stream systems above and below waterfalls/barriers: a multidecadal and broad geographical review. Ecology of Freshwater Fish 2010: 19: 487–509. © 2010 John Wiley & Sons A/S Abstract – Controls for trout and char migratory and resident behaviour in rivers and streams for above and below natural and man‐made waterfalls/barriers are covered in a multi‐decadal (1950–2000) and wide geographical review (North America, UK, Europe, Japan) that includes reference to over 380 publications. These note 53 for rainbow trout, 61 for cutthroat trout, 104 for brown trout, 47 for bull trout, 41 for brook trout, 35 for Dolly Varden and 42 for white‐spotted char, plus a few general contributions of relevance on some. For each of these species, there has been a major increase in relevant decadal publications since the early 1980s, no doubt in large part because of the upsurge in micro‐genetic methodology for DNA and related technology, coupled with a broadening of interest in stream migratory behaviour of salmonids. Main mechanisms for the control of stream migratory versus resident behaviour appear to cover an interplay among both genetic and environmental factors; in some populations and locations, genetic controls seem to be more important than environmental ones, but in others the reverse. Habitat degradation by various human activities and their introductions of non‐native fish species are becoming causes of reduction in abundance of above and below waterfall stream populations for several of these salmonid species.  相似文献   

16.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

17.
Due to widespread stocking, Rainbow Trout (Oncorhynchus mykiss Walbaum) are perhaps the most widely distributed invasive species in the world. Nonetheless, little is known about the effects of stocked Rainbow Trout on native non‐game species. We conducted experiments in an artificial stream to assess the effects of hatchery Rainbow Trout on home range and behaviour of Warpaint Shiners (Luxilus coccogenis Cope), a common minnow frequently found in stocked Southern Appalachian streams. We used the LoCoH algorithm to generate polygons describing the home ranges used by Warpaint Shiners. When a stocked trout was present Warpaint Shiners: (a) increased home range size by 57%, (b) were displaced into higher velocity mesohabitats, and (c) reduced mean overlap between the home ranges of individual warpaint shiners. Rainbow Trout did not significantly affect the edge/area ratio of Warpaint Shiner home ranges. Warpaint Shiner density (two and five fish treatments) did not significantly affect any response variable. Displacement from preferred microhabitats and increases in home range size likely result in increased energy expenditure and exposure to potential predators (i.e., decreased individual fitness) of Warpaint Shiners when stocked trout are present.  相似文献   

18.
The rehabilitation of native communities by means of eradicating unwanted fish species using piscicides is an example of employing disturbance to achieve conservation successes. Such projects provide a valuable opportunity to test the efficiency of the tool and the impacts on the receiving aquatic communities, as disturbance occurs at a known time. The piscicide ‘rotenone’ has been widely used to eradicate invasive or unwanted fish species worldwide. However, there is little information regarding the impact on native fish being reintroduced to a stream after rotenone treatment. The mass depletion of aquatic invertebrates due to rotenone dosing is of particular concern, as food‐limitation could negatively impact on fish growth, condition and recruitment, compromising the aims of rehabilitation. For the first time in New Zealand, rotenone was employed to eradicate brown trout (Salmo trutta) from two streams that also supported populations of banded kokopu (Galaxias fasciatus). Impacts on fish and aquatic invertebrates were studied in two treatment and two reference streams in Karori, Wellington. Analysis showed that invertebrate densities declined significantly in the treatment streams in the 2‐week to 2‐month period after dosing. Following reintroduction after rotenone treatment, banded kokopu condition declined significantly and levels of fish mobility were variable. One year after rotenone dosing, there was recruitment of banded kokopu juveniles in the treatment streams indicating successful reproduction, with no equivalent increase in the reference streams. Results are a positive indication for the use of rotenone as an effective conservation tool to remove unwanted fish species where they threaten native populations.  相似文献   

19.
The variation in semen production among farmed Atlantic salmon (Salmo salar) and rainbow trout (Salmo gairdneri) has been studied. Both species were stripped at weekly intervals, the Atlantic salmon four times and the rainbow trout three times.The individual variation in volume of semen was very high, particularly in rainbow trout. The total volume of semen obtained was 137 ml (20 ml/kg body weight) in Atlantic salmon and 23 ml (5 ml/kg body weight) in rainbow trout. The intraclass correlation for volume of semen was estimated at 0.73 in Atlantic salmon and at 0.59 in rainbow trout. The correlations between volume of semen and body size (weight and length) were all positive. They were all significant and medium in Atlantic salmon whereas in rainbow trout they were all low and significant only for volume of semen at first stripping.The number of males needed to supply the Norwegian fish farming industry with semen is discussed. It is concluded that the possibility of disseminating genetic improvement throughout the whole population of farmed Atlantic salmon and rainbow trout by transport of semen from selected males is considerable.  相似文献   

20.
Abstract. The results of population genetics studies associated with the problem of the restoration of Atlantic salmon, Salmo salar L., in Russia are presented. The peculiarities of using donor material for artificial population formation when the native gene pool has been lost are discussed. Genetic polymorphism in 19 salmon populations from different areas (within Russia) were investigated and analysed. Intrapopulation genetic differences of the Pechora River Atlantic salmon are shown. The role of monitoring in salmon culture is discussed and the results of an ecologo-genetic evaluation of natural and artificial salmon populations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号