首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AIM: To study the expression profiles and the role of Ca2+/calmodulin-dependent kinase Ⅱ delta (CaMKⅡδ) during osteoclast differentiation.METHODS: Mouse RAW264.7 cells were induced by receptor activator of nuclear factor κB ligand (RANKL) at 50 μg/L for osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) staining and bone resorption lacunae examination were performed to verify osteoclast formation. The expression of CaMKⅡδ at mRNA and protein levels was also determined by immunofluorescent cytochemistry, RT-qPCR and Western blot at days 0, 1, 3 and 5.RESULTS: TRAP positive multinuclear cells with bone resorption function were formed after 5 d of induction. The mRNA levels of CaMKⅡδ detected by RT-qPCR were 1.028±0.041, 2.478±0.087, 10.524±1.284 and 42.914±2.667 at days 0, 1, 3 and 5, respectively, while the protein levels of CaMKⅡδ detected by Western blot were 0.762, 0.963, 1.802 and 3.136, respectively. The changes of protein level were also verified by immunofluorescence cytochemistry, in which the fluorescence intensity increased in a time-dependent manner (P<0.05).CONCLUSION: The expression of CaMKⅡδ increases with the differentiation of osteoclasts. CaMKⅡδ may play a key role in the osteoclastogenesis.  相似文献   

2.
AIM: To investigate the effects of mitogen activated protein kinase on γ-glutamylcysteine synthase (γ-GCS) in lung of guinea pigs with bronchial asthma.METHODS: Twenty adult male guinea pigs were divided into asthmatic group and control group (10 in each group).Asthmatic model was established by ovalbumin intraperitoneal injection combined with inhalation.The numbers of total and inflammation cells in bronchoalveolar lavage fluid (BALF) were measured.The γ-GCS-h mRNA in lung tissue was examined by in situ hybridization and RT-PCR.Immunohistochemistry was used to detecte the expression of γ-GCS,phosphorylated extracellular signal regulated kinase (p-ERK),phosphrylated c-Jun amino terminal kinase (p-JNK) and phosphorylated p38 (p-p38) in lung tissues.Western blotting was conducted to determine the expressions of p-ERK,p-JNK and p-p38 in lung tissue.The activity of γ-GCS was measured by coupled enzyme assay.RESULTS: (1) The total cell number and number of eosinophils in BALF of asthmatic group were significantly higher than those in control group (P<0.01).(2) Immunohistochemistry indicated that the p-ERK,p-p38,p-JNK and γ-GCS were stronger expressed in asthmatic group than those in control group (P<0.01).Western blotting also discovered that the expressions of p-ERK,p-JNK and p-p38 in lung tissue of asthmatic group were stronger than those in control group.(3) Both in situ hybridization and RT-PCR analysis showed that the expression of γ-GCS-h mRNA was more positive in asthmatic group compared with control group (P <0.01).(4) The activity of γ-GCS of asthmatic group was significantly higher than that in control group (P<0.01).(5) Linear correlation analysis indicated that in lung tissue of guinea pig with asthma,p-ERK and p-p38 markedly positive correlated with γ-GCS-h mRAN and γ-GCS protein.No relationship between p-JNK and γ-GCS-h mRAN,γ-GCS protein was observed.CONCLUSION: The expressions of p-ERK,p-p38,p-JNK and γ-GCS increase in lung of guinea pigs with bronchial asthma.p-ERK and p-p38 may positively regulate the expression of γ-GCS.  相似文献   

3.
4.
5.
黑暗中脱水对‘ 金太阳’ 杏离体叶片PSI和PSII功能的影响   总被引:2,自引:0,他引:2  
以6年生'金太阳'杏(Prunus armeniaca L. 'Jin Taiyang')叶片为试材,通过同时测定叶绿素荧光快速诱导动力学曲线和对820 nm光的吸收曲线,分析了黑暗脱水条件下,杏叶片光系统Ⅱ(PSⅡ)和光系统Ⅰ(PSⅠ)功能的变化及相互影响.结果表明,叶片在黑暗中脱水能对光合结构造成严重伤害.黑暗脱水对PSⅡ供体侧的影响不明显.在相对含水量(RWC)降到59%时,快速叶绿素荧光诱导动力学曲线和820 nm光吸收曲线的形状已有非常明显的变化,但对PSⅡ最大光化学效率(Fv/Fm)和反映PSⅠ活性的△I/Io的影响较小.这说明RWC大于59%时,PSⅡ供应电子的能力和PSⅠ接受电子的能力可以保持相互匹配,即PSⅡ和PSⅠ的活性之间是协调的.RWC低于59%时,PSⅠ与PSⅡ之间的上述协调关系被打破,△I/Io的下降早而且大于Fv/Fm的变化,表明叶片脱水对PSⅠ的伤害比PSⅡ严重.与Fv/Fm相比,以吸收光能为基础的光合性能指数(PIABS)可以较全面地反映两个光系统间光合电子传递的变化.  相似文献   

6.
AIM: To investigate the effect of urotensinⅡ (UⅡ) on the proliferation of cultured rat pulmonary arterial smooth muscle cells (PASMCs), and to explore whether mitogen-activated protein kinase (MAPK) signaling pathways and early growth response factor-1 (Egr-1) involved in the regulation of the PASMCs proliferation stimulated by UⅡ. METHODS: The rat PASMCs were isolated and cultured in vitrowith explant culture technique. The proliferation of cultured PASMCs stimulated by different doses of UⅡwas detected by BrdU incorporation. The mRNA expression of extracellular signal-regulated kinase 1/2 (ERK1/2), stress-activated protein kinase (SAPK), p38 MAPK and Egr-1 in cultured PASMCs treated with UⅡ, UⅡ-specific antagonist urantide, and ERK1/2 inhibitor PD98059 was detected by real-time PCR. The protein levels of phosphorylated ERK1/2 (p-ERK1/2), p-SAPK, p-p38 and Egr-1 in cultured PASMCs were determined by Western blotting. RESULTS: UⅡ at concentrations of 1 μmol/L, 0.1 μmol/L and 0.01 μmol/L increased the proliferation of cultured PASMCs in a dose-dependent manner (P<0.01 or P<0.05), with the maximal effect at a concentration of 1 μmol/L. However, urantide inhibited the promotion effect of UⅡ on PASMC proliferation (P<0.05). UⅡ up-regulated the mRNA expression of ERK1/2, SAPK and Egr-1 (P<0.01 or P<0.05), but not the p38 MAPK. However, the up-regulatory effect of UⅡ on ERK1/2 and Egr-1 expression was inhibited by PD98059 and/or urantide (P<0.01 or P<0.05). UⅡ also increased the protein levels of p-ERK1/2, p-SAPK and Egr-1 (P<0.01 or P<0.05), but the promotion effect was also inhibited by PD98059 and/or urantide (P<0.01 or P<0.05).CONCLUSION: UⅡ increases the proliferation of PASMCs, and U Ⅱand Egr-1 participates in UⅡ-mediated proliferation of cultured PASMCs through activation of ERK1/2 signal pathway.  相似文献   

7.
AIM:To investigate the role of reative oxygen species (ROS) generated by iron overload in activating the mitogen-activated protein kinase (MAPK) pathways and apoptosis. METHODS:Cultured human osteoblast cell line hFOB1.19 was treated with ferric ammonium citrate (FAC) at concentrations of 0~500 μmoL/L. The proliferation of hFOB1.19 cells was analyzed by MTT assay. Apoptosis was detected by flow cytometry with Annexin V/PI staining. The expression levels of p-ERK, p-JNK and p-p38 were determined by Western blotting 24 h after treatment with FAC. RESULTS:After treated with FAC, the cell proliferation was inhibited. The early apoptosis and total cell death were significantly increased. The levels of ROS were increased to (35.73±2.52)%, (62.89±4.24)% and (76.06±3.55)% with the increasing doses of FAC treatmen,respectively. The expression levels of p-ERK, p-JNK and p-p38 were also remarkably elevated in FAC groups. CONCLUSION:Iron overload increases intracellular ROS level, thus triggering the MAPK pathways and inducing apoptosis of human hFOB1.19 osteoblast cells.  相似文献   

8.
AIM: To investigate the effect of linarin (LIN) on the migration and invasion abilities of human breast cancer MDA-MB-231 cells and its underlying mechanism. METHODS: MCF-7, MDA-MB-231 and MCF-10A cells were cultured in vitro and treated with LIN at 5, 10, 20, 40, 80 and 160 μmol/L for 24 h, and the cell proliferation was measured by CCK-8 assay and colony formation assay. The protein levels of Snail, E-cadherin, matrix metalloproteinase-9 (MMP-9), IκBα, p-IKKα/β and p-p65 were determined by Western blot. RESULTS: LIN remarkably reduced the viability of MDA-MB-231 cells in a dose-dependent manner (P<0.05), and the IC50 was 55.89 μmol/L for 24 h. LIN decreased the colony formation rate of MDA-MB-231 cells at the concentration of 20 μmol/L (P<0.05). After exposed to LIN at 5 μmol/L and 10 μmol/L for 24 h, the migration and invasion abilities of the MDA-MB-231 cells were significantly reduced (P<0.05), the protein expression levels of E-cadherin and IκBα were up-regulated (P<0.05), the protein expression levels of Snail and MMP-9 were down-regulated (P<0.05), and the phosphorylation levels of IKKα/β and p65 were decreased (P<0.05) in comparison with the control group. Meanwhile, IKK-16 (IKKα/β inhibitor) and PDTC (NF-κB inhibitor) also down-regulated the protein expression levels of Snail and MMP-9 (P<0.05), and up-regulated the protein expression level of E-cadherin (P<0.05). CONCLUSION: LIN down-regulates the protein expression levels of Snail and MMP-9, and up-regulates the protein expression level of E-cadherin most likely through inhibiting IKK/NF-κB signaling pathway, and ultimately lead to decreases in the migration and invasion abilities of MDA-MB-231 cells.  相似文献   

9.
AIM: To investigate the role of peroxisome proliferator-activated receptor β(PPARβ)-nitric oxide(NO) signal pathway in cardiomyocyte hypertrophy induced by high glucose(25.5 mmol/L) and insulin(0.1 μmol/L)(HGI). METHODS: The cardiomyocyte hypertrophy was characterized in rat primary cardiomyocytes by measuring the cell surface area, protein content, and the mRNA expression of atrial natriuretic factor(ANF). The mRNA and protein expression were measured by real-time PCR and Western blotting, respectively. The activity of NO synthase(NOS) and NO content were measured by a reagent kit through ultraviolet spectroscopy. RESULTS: HGI induced profound change of hypertrophic morphology, and significantly increased the cell surface area, protein content and mRNA expression of ANF(P<0.01), but decreased the expression of PPARβ at mRNA and protein levels(P<0.05). At the same time, the expression of inducible NOS(iNOS) was obviously elevated(P<0.01), which occurred in parallel with the rising NOS activity and NO concentration(P<0.01). GW0742(1 μmol/L), a selective PPARβ agonist, inhibited the cardiomyocyte hypertrophy induced by HGI(P<0.01), and up-regulated the expression of PPARβ at both mRNA and protein levels. Meanwhile, GW0742 also inhibited the increases in iNOS expression, NOS activity, and NO content induced by HGI, which were abolished by GSK0660(1 μmol/L), a selective PPARβ antagonist(P<0.01). CONCLUSION: PPARβ down-regulation and the following iNOS-NO activation are involved in the cardiomyocyte hypertrophy induced by HGI.  相似文献   

10.
AIM: To study the effects of metoprolol (Meto) on the apoptosis of neonatal rat cardiomyocytes and the phosphorylation of connexin 43 (Cx43) induced by norepinephrine (NE). METHODS: Neonatal SD rat cardiomyocytes were divided into the following five groups (n=6 in each group): (1) control (Con) group: no treatment; (2) NE group: treatment with NE at 0.1 μmol/L for 24 h; (3) NE+Meto group: simultaneous treatment with NE and Meto both at 01 μmol/L for 24 h; (4) NE+Meto+PD98059 group: pretreatment with extracellular signal-regulated kinase (ERK) phosphorylation inhibitor PD98059 at 10 μmol/L for 30 min and then treatment with NE and Meto both at 01 μmol/L for 24 h; (5) NE+PD98059 group: pretreatment with PD98059 at 10 μmol/L for 30 min and then treatment with NE at 01 μmol/L for 24 h. The beating rates of cardiomyocytes in various groups were calculated, and the viability of cardiomyocytes was assayed by MTT method. The Cx43 mRNA expression was detected by RT-PCR, and the protein expression of phosphorylated Cx43 (p-Cx43), phosphorylated ERK1/2 (p-ERK1/2) and cleaved caspase-3 was detected by Western blotting. RESULTS: (1) Separate NE treatment could significantly increased the beating rate of cardiomyocytes and reduced cell viability, while Meto showed the opposite effects. PD98059 treatment had no significant effect on cardiomyocyte beating rate, but suppressed Meto to improve cell viability to some extent. (2) Compared with Con group, separate NE treatment significantly increased the Cx43 mRNA expression (P<001). Compared with NE group, Meto or PD98059 intervention could significantly inhibited Cx43 mRNA expression (both P<001), and simultaneous treatment with Meto and PD98059 could further suppress Cx43 mRNA expression up-regulated by NE (P<001). (3) Compared with NE group, Meto significantly inhibited the increased p-Cx43, p-ERK1/2 and cleaved caspase-3 expression induced by NE (P<001), and simultaneous treatment with Meto and PD98059 could further enhance the inhibition of p-Cx43, p-ERK1/2 and cleaved caspase-3 expression by Meto (P<001). PD98059 treatment had no significant effect on the increased p-Cx43 and cleaved caspase-3 expression induced by NE (P>005). CONCLUSION: The inhibitory effect of Meto on NE-induced cardiomyocyte apoptosis is related to the inhibition of Cx43 phosphorylation, which may be partly mediated via ERK1/2 pathway.  相似文献   

11.
12.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

13.
AIM: To explore the mechanism of lipopolysaccharide (LPS)-induced B7-H1 expression in pancreatic carcinoma cell line Panc-1. METHODS: The levels of phosphorylated p38 mitogen-activated protein kinase (p-p38), phosphorylated extracellular signal-regulated kinase (p-ERK) and phosphorylated c-Jun N-terminal kinase (p-JNK) after stimulated with LPS or treated with mitogen-activated protein kinases (MAPKs) inhibitors were detected by Western blotting. The expression of B7-H1 in Panc-1 cells after LPS stimulation or MAPKs inhibitor treatment was measured by real-time PCR and Western blotting. RESULTS: The levels of B7-H1, p-p38, p-ERK and p-JNK were up-regulated with LPS stimulation. The promoted p-p38, p-ERK and p-JNK levels induced by LPS were inhibited by the corresponding MAPKs inhibitors. Furthermore, the inhibitors of p38 and ERK attenuated LPS-induced B7-H1 expression. However, JNK inhibitor had very little effect on LPS-induced B7-H1 expression. CONCLUSION: LPS induces B7-H1 expression in pancreatic carcinoma cell line Panc-1. ERK and p38 are involved in this regulation as the inhibitors of ERK and p38 attenuate LPS-induced B7-H1 expression.  相似文献   

14.
AIM: To investigate the effect of rosiglitazone on the expression of aquaporin-1 (AQP1), vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) in human peritoneal microvascular endothelial cells.METHODS: Cultured peritoneal microvascular endothelial cells were divided into 4 groups. The morphological changes of the cells were observed under inverted microscope. The protein expression of AQP1, VEGF-A and COX-2 in human peritoneal microvascular endothelial cells was determined by Western blotting. The mRNA expression of AQP1, VEGF-A and COX-2 in the cells was measured by real-time PCR. RESULTS: Rosiglitazone stimulated the proliferation of the cells. Rosiglitazone up-regulated the expression of AQP1, and down-regulated the expression of VEGF-2 and COX-2 at mRNA and protein levels in the cells. The PPAR-γ antagonist GW9662 partly inhibited the up-regulation of AQP1 expression by rosiglitazone (P<0.05), but had no obvious effect on the expression of VEGF-A and COX-2 (P>0.05). CONCLUSION: Rosiglitazone up-regulates the expression of AQP1 and down-regulates the expression of VEGF-A and COX-2 in human peritoneal microvascular endothelial cells, thus promoting water transportation and attenuating peritoneal fibrosis during peritoneal dialysis.  相似文献   

15.
AIM: To study the molecular mechanism of Chinese medicine formula Bushen Bugu Tang (BSBGT) for the treatment of postmenopausal osteoporosis (PMO). METHODS: Forty female SD rats were divided into four groups: the sham group, OVX group, estrogen treatment group and BSBGT treatment group, ten for each, difference operation and treatment were given. Subsequently, bone mineral density (BMD), bone histomorphometric changes and collagen type I expression in the femur of these rats were examined. In order to position the target of the formula acting on bone, the effect of BSBGT on regulation of mRNA levels of RANKL and OPG, two key factors for regulating osteoclastogenesis, by using rat calvarial-derived stromal cell cultrues, was elucidated. RESULTS: The BSBGT formula was found as effective as estrogen in preventing the reduction of BMD, the trabecular area and trabecular numbers in femora and also the decrease in collagen type I expression following ovariectomy. RT-PCR resulted showed that both estrogen and BSBGT significantly up-regulated OPG mRNA level and down-regulated RANKL mRNA level, resulting in an increased ratio of OPG/RANKL in cultured rat stromal cells. CONCLUSIONS: The ratio of OPG/RANKL within the osseous environment determines whether bone formation predominates bone resorption. We therefore concluded that the BSBGT formula might be as effective as estrogen in prevention of postmenopausal osteoporosis through the mechanism of up-regulating RANKL expression and down-regulating OPG expression in osteoblast/stromal cells.  相似文献   

16.
17.
AIM:To investigate the effect of dexmedetomidine (Dex) on neuronal apoptosis induced by isoflurane (Iso) and its relationship with the expression of p38 mitogen-activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) proteins in the hippocampus of neonatal rats. METHODS:Forty-eight neonatal SD rats at postnatal day 7 were randomly divided into control group (Con), Dex group, Iso group and Iso combined with Dex (Iso+Dex) group. Rats in Iso and Iso+Dex groups were exposed to 0.75% Iso for 6 h, while rats in Con and Dex groups were exposed to air for 6 h. Rats were intraperitoneally injected with 25 μg·kg-1 Dex (Dex and Iso+Dex groups) or 150 μL saline (Con and Iso groups) 20 min before exposure and 2 and 4 h after exposure. After the termination of anesthesia, the neuronal apoptosis in hippocampal CA1 region was detected by TUNEL staining, and the protein expression of cleaved caspase-3, phospho-p38 (p-p38), p38, phospho-JNK (p-JNK) and JNK in hippocampal tissues was detected by Western blotting. RESULTS:The number of TUNEL positive cells in hippocampal CA1 region of the rats in Iso group was increased by 447.57% (P<0.01) compared with Con group, while Dex significantly inhibited the increased TUNEL positive cells in Iso group by 75.18% (P<0.01). The expression of cleaved caspase-3 protein in Iso group was increased by 126.29% (P<0.01) compared with Con group, while Dex reversed the increased cleaved caspase-3 protein expression (P<0.01). Iso significantly increased the phosphorylation of p38 and JNK proteins (P<0.01), while Dex reversed the increased p-p38 and p-JNK proteins (P<0.01). CONCLUSION:Dex attenuates Iso-induced neuroapoptosis in the hippocampus of neonatal rats through inhibiting the phosphorylation of p38 and JNK proteins.  相似文献   

18.
AIM:To investigate the effects of nodosin on apoptosis of human hepatocellular carcinoma HepG2 cells. METHODS:HepG2 cells were treated with nodosin at different concentrations (1.25 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L and 20 μmol/L) for 24 h. The morphological changes of the HepG2 cells were observed by Hoechst 33258 staining and electron microscopy. The apoptotic rates were analyzed by flow cytometry. The mRNA expression of apoptotic protease-activating factor-1 (Apaf-1) was detected by RT-qPCR. The protein levels of pro-caspase-3, caspase-3 and cleaved caspase-3 were determined by Western blot. RESULTS:HepG2 cells showed obvious cell shrinkage and nucleus drift when treated with nodosin as the concentration was increased. Many apoptotic bodies were observed in 5 μmol/L, 10 μmol/L and 20 μmol/L nodosin groups. The mRNA expression of Apaf-1 was increased in 5 μmol/L, 10 μmol/L and 20 μmol/L nodosin groups as compared with control group (P<0.05). The protein levels of pro-caspase-3, caspase-3 and cleaved caspase-3 were increased with the increasing dose of nodosin (P<0.05). CONCLUSION:Nodosin induces the apoptosis of HepG2 cells. This effect was related to increasing Apaf-1 mRNA expression and subsequently promoting the activation of caspase-3.  相似文献   

19.
AIM: To investigate the role of Toll-like receptor 4 (TLR4) and transient receptor potential channel 6 (TRPC6) signaling pathway in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) P65 expression and nuclear translocation in airway epithelial cells (16HBE) for supplementing the mechanism for airway inflammation. METHODS: After stimulating the 16HBE cells with LPS at 1 mg/L for 0, 0.5, 2, 6, 12 and 24 h, the expression of NF-κB P65 at mRNA and protein levels in the 16HBE cells were determined by RT-PCR and Western blot respectively, and the nuclear translocation of NF-κB P65 was detected by immunocytochemical staining method. The effects of TLR4 inhibitor CLI-095 at 5 μmol/L and TRPC6 agonist Hyp9 at 10 μmol/L on LPS (1 mg/L)-induced NF-κB P65 expression and nuclear translocation in the 16HBE cells were determined by RT-PCR, Western blot and immunocytochemical staining. RESULTS: LPS increased the mRNA and protein expression of NF-κB P65 and nuclear translocation in the 16HBE cells(P<0.05). TLR4 inhibitor CLI-095 reduced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS, while Hyp9 enhanced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS in the 16HBE cells(P<0.05). CONCLUSION: LPS induces the expression and nuclear translocation of NF-κB P65 in the 16HBE cells via TLR4-TRPC6 signaling pathway.  相似文献   

20.
AIM: To explore the effect of Pycnogenol on transforming growth factor-β1 (TGF-β1)-induced hepatic stellate cell activation. METHODS: Cultured LX-2 cells were treated with 5 μg/L TGF-β1 and different concentrations (0, 10, 25 and 50 mg/L) of Pycnogenol. The viability of the LX-2 cells under the conditions with or without autophagy inhibitor 3-MA and ERK inhibitor PD98059 was determined by MTT assay. The protein levels of α-SMA, ColⅠ, TIMP-1, LC3-Ⅱ/Ⅰ, beclin 1, p-ERK1/2 and ERK1/2 were detected by Western blot. RESULTS: Compared with control group, 5 μg/L TGF-β1 treatment elevated the cell viability, and increased the protein levels of α-SMA, ColⅠ, TIMP-1, LC3-Ⅱ/Ⅰ, beclin 1, p-ERK1/2, and ERK1/2 in the LX-2 cells (P<0.05). However, these effects were reversed by Pycnogenol pretreatment in a dose-dependent manner and the inhibitory effect of 50 mg/L Pycnogenol was the most significant in the LX-2 cells (P<0.05). Furthermore, compared with TGF-β1 group, pretreatment with 50 mg/L Pycnogenol, 5 mmol/L 3-MA or 20 μmol/L PD98059 downregulated TGF-β1-induced cell viability and the protein levels of α-SMA and LC3-Ⅱ/Ⅰ in the LX-2 cells (P<0.05). CONCLUSION: Pycnogenol suppresses TGF-β1-induced hepatic stellate cell activation via p-ERK and autophagy inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号